
Scaling Up Record-level Matching Rules

Luca Gagliardelli, Giovanni Simonini, and Sonia Bergamaschi

University of Modena and Reggio Emilia, Modena, Italy
<name.surname>@unimore.it

Abstract. Record-level matching rules are chains of similarity join pred-
icates on multiple attributes employed to join records that refer to the
same real-world object when an explicit foreign key is not available on
the data sets at hand. They are widely employed by data scientists and
practitioners that work with data lakes, open data, and data in the wild.
In this work we present a novel technique that allows to efficiently exe-
cute record-level matching rules on parallel and distributed systems and
demonstrate its efficiency on a real-wold data set.

Keywords: Data Integration · Entity Resolution · Parallel similarity
join

1 Introduction

Combining data sets that bare information about the same real-world objects is
an everyday task for practitioners that work with structured and semi-structured
data. Frequently (e.g., when dealing with data lakes or when integrating open
data with proprietary data) data sets do not have explicit keys that can be used
for a traditional equi-join [12,13,7,9]. When that happens, a common solution
is to perform a similarity join [10], i.e., to join records that have an attribute
value similar above a certain threshold, according to a given similarity measure,
as in the following example:

Example 1. (Similarity Join) Given two product data sets, join all the record
pairs with the Jaccard similarity of the product names above 0.8.

A plethora of algorithms have been proposed in the last decades to effi-
ciently execute the similarity join considering a single attribute, i.e., attribute-
level matching rules (see [10] for a survey). At their core, all these algorithms
try to prune the candidate pairs of records, on the basis of a single-attribute
predicate—to alleviate the quadratic complexity of the problem.

Interestingly, only a few works had been focused on studying how to execute
record-level matching rules, i.e., the combination of multiple similarity join pred-

Copyright c© 2020 for this paper by its authors. Use permitted under Creative Com-
mons License Attribution 4.0 International (CC BY 4.0). This volume is published
and copyrighted by its editors. SEBD 2020, June 21-24, 2020, Villasimius, Italy.

Gagliardelli L. et al.

icates on multiple attributes (see Section 2). Yet, this kind of rules permits to
specify more flexible rules to match records, as in the following example:

Example 2. (Record-level matching rule) Given two product data sets, join
all the record pairs that have a Jaccard similarity of the product names above 0.8,
or that have a Jaccard similarity of the description that is above 0.6 and the edit
distance of the manufacturer lower than 3.

Furthermore, record-level matching rules can be used to represent decision
trees [2], hence learned with machine learning algorithms when training data
is available. As a matter of fact, a decision tree for binary classification (i.e.,
classification of matching/not-matching records) can be naturally represented
with DNF (disjunctive normal form) predicates—the same consideration can be
done for a forest of trees.

To the best of our knowledge, no techniques have been proposed to lever-
age distributed and parallel computing for scaling record-level matching rules.
The benefit is twofold: (i) distributed computation allows to scale to large data
sets that cannot be handled with a single machine; (ii) parallel execution re-
duces the execution times (3 times faster in our experiments). As a matter of
fact, being able to efficiently execute similarity join is crucial when time is a
critical component, e.g., when users are involved in the process. For instance,
in exploratory search in a data lake [11], users typically look for related data
sets and low latency in performing similarity join is required for enabling the
user’s interactive exploration. Also, when debugging record-level matching rules,
users typically try different configurations of similarity metrics, thresholds, and
attributes. Hence, enabling fast execution of such rules can significantly save
user’s time.

Contribution. In this work we present a technique that is able to use different
similarity measures to apply record-level matching rules efficiently. Moreover,
we present an algorithm, RulER, to efficiently run record-level matching rules
on MapReduce-like systems, to take full advantage of a parallel and distributed
computation.

The rest of the paper is organized as follow: Section 2 provides the prelimi-
naries. Then, in Section 3 we present our novel technique. Section 4 shows the
experimental results. Finally, in Section 5 we draw the conclusions.

2 Preliminaries and Related Work

This section describes the fundamental concepts and the related work.

2.1 Matching Rule

We define a matching rule R as a disjunction (logical OR) of conjunctions (log-
ical AND) of similarity join predicates on multiple attribute (i.e., at the record
level). This design choice is driven by the fact that DNF matching rules are
easy to read and thus to debug, in practice. Moreover, DNFs can be employed

Scaling Up Record-level Matching Rules

to represent the trained model of a decision tree (or of a random forest), hence
suitable for exploiting labeled data. In this work, we focus on how to scale DNF
matching rules and we do not investigate how to generate good DNFs (i.e., de-
cision trees/random forests) starting from training data, which is the focus of
Ardalan et al. [2]—Ardalan et al. do not investigate the parallel and distributed
execution of matching rules.

2.2 Set Similarity Join

A record ri is considered as a set of elements identified by a unique identifier.
Different techniques can be employed to generate the elements from the values
of a record, for example, each word can be considered as a token or it is possible
to generate the n-grams, etc. Formally, given a collection of records, a similarity
function sim and a similarity threshold t, the goal of set similarity join is to find
all the possible pairs of records 〈ri, rj〉 such that sim(ri, rj) ≥ t.

A näıve solution to perform the set similarity join is to enumerate and com-
pare every pair of records, but this process is highly inefficient and not feasible in
the Big Data context. To reduce the task complexity different approaches were
proposed in literature [4,3,16,15]. All these approaches adopt a filter-verification
approach: (1) first an index is used to obtain a set of pre-candidates; (2) the
pre-candidates are filtered using a set of pre-defined filters; (3) the resulting
candidate pairs are probed with the similarity function to generate the final
results.

The most used filters are: prefix filter, length filter, and positional filter. All
these filters can be adapted to work with different similarity measures: Dice,
Cosine, Jaccard Similarity, Edit Distance and Overlap Similarity [10,15,16].

Prefix filter A key technique to perform the set similarity join efficiently is the
prefix filter [4]. First of all, given a collection of records (i.e., sets of elements)
their elements are sorted according to a global order O, usually the document
frequency of the tokens (i.e., how many documents contain that token) that is
a heuristic that helps to reduce the number of comparisons [4]. Then, for each
sorted set, only the first π elements are considered, i.e., the prefixes. A pair
〈ri, rj〉 can be safely pruned if their prefixes have no common elements. The
prefix size depends on the similarity threshold and the similarity function. For
example, the prefix filter for the overlap similarity is defined as follows: given
two sets, ri and rj , and an overlap threshold t; if |ri ∩ rj | ≥ t, then there is
at least one common token within the πri-prefix of ri and the πrj -prefix of rj ,
where r = |rj | − t+ 1 and s = |rj | − t+ 1.

An example of how prefix filter works is reported in Figure 1. The prefixes
for overlap threshold t = 4 are highlighted in grey. Since the two prefixes do
not share any token, the pair 〈ri, rj〉 can be pruned. The intuition behind this is
that the 3 remaining tokens to check can provide at most a similarity of 3, that
is not enough to reach the requested threshold t.

Gagliardelli L. et al.

a b c ? ? ? d e ? ? ?t = 4 ri rj

Fig. 1. Prefix filter.

Length filter A filter that is commonly used in conjunction with the prefix filter
is the length filter [1]. Normalized similarity functions (e.g., Jaccard, Cosine,
Dice, ED) depend on the set size, thus it is possible to exploit it to prune the
pairs generated with the prefix filter. For the Jaccard Similarity the length filter
is defined as: a set of elements r can reach Jaccard threshold t only with a set

s of size lbr ≤ |s| ≤ ubr (lbr = t · |r|, ubr = |r|
|t|); for example, if |r| = 10 and

t = 0.8, then 8 ≤ |s| ≤ 12 is required.

Positional filter The positional filter [16] reasons over the matching position
of tokens in the prefix. Given a pair of sets of sorted elements it checks the
positions of their common tokens in the prefix, if the remain tokens to check are
not enough to reach the threshold, it prunes the pair. Since it needs to scan the
tokens in the prefix, this filter is more expensive than prefix and length filters,
so usually it is applied only on the pairs that already passed them.

An example of how positional filter works is provided in Figure 2. The pair
〈ri, rj〉 passes both length and prefix filters. The first match in ri occurs in
position 1 (counting from 0), thus only 8 tokens of rj are left to match tokens of
ri, and the pair can be filtered because it can never reach the requested threshold
t = 9.

a f ? ? ? ? ? ? ? ?

b f ? ? ? ? ? ? ?

t = 9ri

rj

9

8

min(8, 9) = 8
 8 < 9 → Filtered

Fig. 2. Positional filter example.

Prefix filter based set similarity join An example of how a prefix filter
based set similarity join works is outlined in Figure 3. Starting from a document
collection, the documents are transformed in sets of elements (e.g., tokens, n-
grams, etc.) and sorted according to a global order (1). Then, using the prefixes
(highlighted in gray) an inverted index is built, i.e., the prefix index (2). From
the prefix index, a set of pre-candidate pairs is built (3), i.e., each pair of profiles
that appear together in at least one entry of the prefix index. The pre-candidate
pairs are filtered using different filters (e.g., length filter, positional filter, etc.)
that are fast to compute and let to discard the pairs that cannot reach the
threshold (4). Finally, the pairs that pass all the filters (i.e., candidate pairs) are
probed with the similarity function, and only those that have a similarity above
the threshold are retained (5).

Scaling Up Record-level Matching Rules

<p1, p2>
<p2, p3>

...

<p1, p2>
<p1, p3>
<p2, p3>

...

p1 = "word1 word2 ..."
p2 = "word3 word4 ..."
p3 = "word5 word1 ..."

...

Collection of profiles

p1 = [A, B, D, ...]
p2 = [B, C, D, ...]
p3 = [A, D, E ...]

...

Set of sorted elements

(1) elements
generation
and sorting

A → [p1, p3, …]
B → [p1, p2, …]
D → [p1, p2, p3, …]

...

Prefix index

(2) prefix
index

building (3) pre-candidates
generation

Pre-candidates

(4) filtering

Candidates

<p1, p2>
...

(5) verification

Results

Fig. 3. Prefix filter based Similarity Join process.

3 RulER

In this section, we present our method RulER to efficiently scale record-level
matching rules over big data sets. The presented algorithm is the self-join version
for the sake of the presentation; adapting it for joining two different data sets is
straightforward.

3.1 Baseline algorithm

Given a matching rule R a näıve solution to perform it is to process each pred-
icate as a single similarity join and then intersect/merge the obtained results
according to the requirements. In particular, we adopted two algorithms to per-
form the similarity joins: PPJoin [16] and EDJoin [15]. Both algorithms employ
prefix filter (see Section 2) to find candidate pairs. PPJoin is considered one
of the best performing similarity join algorithm [10], also its parallel implemen-
tation (i.e., Vernica Join) has demonstrated to be one of the best performing

Algorithm 1 PPJoin/EDJoin

Input: R collection of records to join
Input: P predicate that contains the join attribute, the threshold, and the elements

pattern (i.e., tokens, n-grams, etc.)
Output: C, the pairs of records that can satisfy P
1: RT ← getSortedElements(R,P) //Transforms the records in set of sorted ele-

ments (i.e., tokens, n-grams, etc.)
2: I ← buildPrefixIndex(RT ,P) //Build prefix index
3: C ← flatMap Bi ∈ I //For each entry of the prefix index
4: for each 〈rj , rk〉 ∈ Bi(rj 6= rk) do
5: if passLengthF ilter(rj , rk,P) then
6: if passPositionalF ilter(rj , rk,P) then
7: emit(〈rj , rk〉)

Gagliardelli L. et al.

for distributed computing [6]. It can work with different similarity measures like
Jaccard Similarity, Dice and Cosine. EDJoin adapts the PPJoin concepts to
work with the Edit Distance. We adapted both algorithms to work on Spark as
proposed in [14] for PPJoin(i.e., Vernica Join).

The distributed algorithm to perform PPJoin/EDJoin is presented in Algo-
rithm 1. First, the records are transformed into sets of sorted elements according
to the predicate requirements (line 1). The prefix index (see Subsection 2.2) is
built generating an inverted index that groups all the records that share at least
one token in their prefix. Then, the algorithm iterates over each entry of the
prefix index Bi, probing each pair of records 〈ri, rj〉 ∈ Bi with the appropriate
filters according to the predicate P.

Algorithm 2 outlines the baseline algorithm (i.e., JoinChain). A rule in DNF
format is composed of different blocks Pi of predicates that are in logical OR,
each of these blocks contains one or more predicates pi that are in logical AND.
First, the algorithm iterates over the Pi blocks (line 2) and for each of them
initializes a set of candidates CPi

(line 3). Then, each simple predicate pj ∈
Pi is used to apply a similarity join on the record collection R according to
requirements (lines 6-9). The result of a Pi block is given by the intersection of
the results provided by each similarity join applied with the predicate pj ∈ Pi

(lines 10-13). The final candidate set is computed by merge the results of each
Pi block (line 14). In the end, the candidates are verified with a verify function
that ensures that all predicates are respected (line 15).

Algorithm 2 JoinChain

Input: R collection of records to join
Input: M matching rule in DNF form
Output: M , the pairs of records that satisfy M
1: C ← {}
2: for each Pi ∈M do //For each block of predicates in or
3: CPi ← {} //Set of candidate pairs for Pi

4: for each pj ∈ Pi do //For each single predicate in and
5: Cpj ← {} //Set of candidate pairs for pj
6: if pi.type = ED then
7: Cpj ← EDJoin(R, pj) //Get candidate pairs with EDJoin
8: else
9: Cpj ← PPJoin(R, pj) //Get candidate pairs with PPJoin

10: if CPi .isEmpty then //Intersects candidates with previous ones
11: CPi ← Cpi

12: else
13: CPi ← CPi ∩ Cpj

14: C ← C ∪ CPi //Merge candidates with previous ones

15: return verify(C,M)

3.2 The RulER Algorithm

Algorithm 2 has three main drawbacks:

Scaling Up Record-level Matching Rules

(i) the intersect operation (line 13) is expensive in MapReduce-like systems,
because it generates shuffle ;

(ii) a predicate is independently checked by the others. For example, given a
matching rule M = (C1∧C2)∨ (C3∧C4) in which each Cx is a similarity
join predicate (e.g., Jaccard Similarity title ≥ 0.8). A pair 〈ri, rj〉 is probed
with all predicates even if it fails/passes one of them. For example, if the
pair passes the predicate (C3 ∧ C4) it is not necessary to probe it with
(C1∧C2). Or, if it fails with the predicate C1 it is not necessary to probe
it with C2, C3.

(iii) Vernica Join [14], employed in the implementation of JoinChain algorithm
(Algorithm 2 lines 7, 9), produces duplicates [6] that have to be removed. If
a pair of records appears in more prefix entries, it is processed and emitted
multiple times (Algorithm 1 lines 3-7).

We solved these problems in our RulER algorithm. The main intuition of RulER
is to exploit the prefix indexes—one prefix index for each predicate of the match-
ing rule—to build a graph structure, which is then employed to iterate over the
records (the nodes of the graph), efficiently applying the rules and to keep only
the candidates (the edges of the graph) that pass the whole rule. In other words,
RulER adopts a record-based parallelization approach; in contrast to the exist-
ing algorithms, which adopt a prefix-based parallelization approach on a single
predicate at a time.

The RulER matching rule execution algorithm is outlined in Algorithm 3.
The algorithm takes as input a collection of records and a record-level matching
rule M and gives as output the set of record pairs that satisfy M. Recall that
M is in DNF, i.e., it is composed of sets of predicates Pj in logical or, each
set Pj contains predicates pk in logical and. First of all, the values of attributes
are converted into sets of elements (Line 1) according to the matching rule
requirements (e.g., n-grams, trigrams, tokens, etc.); then the prefix indexes are
built to find the candidate pairs (line 2)—one prefix index is needed for each
predicate pk of the matching rule. The prefix indexes are sent in broadcast to
each node (line 3) to be available to each computational node (called worker).
Then, each worker iterates over its portion of records (lines 5-6), and performs
the following operations for each record ri. First, a set of candidates for ri is
initialized as an empty set Cri (line 7). Second, for each set Pj , a set of candidates
CPj

is initialized as an empty set (lines 8-9) and for each pk ∈ Pj the candidates
Cri,pk

that can match with ri are extracted using the prefix indexes (lines 10-
11). Third, the candidates Cri,pk

are pruned by removing those that already
passed one of the previous Pj set of predicates (line 14), and those that did not
passed previous pk ∈ Pj predicates (lines 15-16). Fourth, the retained candidates
are probed with other filters that further improve the efficiency of the overall
process (e.g., length filter, position filter, etc. [16,15]) according to the rule (line
18). Since pk is in logical and with the previous predicates, only the candidates

https://spark.apache.org/docs/2.1.0/programming-guide.html#

shuffle-operations

https://spark.apache.org/docs/2.1.0/programming-guide.html#shuffle-operations
https://spark.apache.org/docs/2.1.0/programming-guide.html#shuffle-operations

Gagliardelli L. et al.

Algorithm 3 RulER

Input: R collection of records to join
Input: M matching rule in DNF
Output: C, the pairs of records that satisfy M
1: RT ← getElements(R,M)
2: I ← buildPrefixIndexes(RT ,M)
3: broadcast(I)
4: C ← {} //Candidate pairs
5: map partition part ∈ RT

6: for each ri ∈ part do
7: Cri ← {} //Candidates for ri
8: for each Pj ∈M do //For each set of predicates in logical or
9: CPj ← {} //Candidates that satisfy Pj

10: for each pk ∈ Pj do //For each predicate in logical and
11: Cri,pk ← I(pk, ri) //Gets the candidates from the prefix index
12: /*Removes candidates that already passed previous predicates in or
13: and those that did not pass previous predicates in and*/
14: Cri,pk ← Cri,pk − Cri

15: if CPj 6= ∅ then
16: Cri,pk ← Cri,pk ∩ CPj

17: /*Applies filters (length, positional, ...)*/
18: CPj ← applyF ilters(ri, Cri,pk , pk)

19: Cri ← Cri ∪ CPj

20: C.append(Cri)

21: return verify(C,M)

that pass the filters are kept. The resulting candidates from Pj are added to Cri

(line 20). Finally, the candidates are verified (line 21).
Given a matching rule R = (C1 ∧ C2 ∧ C3) ∨ (C4 ∧ C5), in which each Cx

is a similarity join predicate (e.g., Jaccard Similarity title ≥ 0.8); an example of
how RulER executes R is outlined in Figure 4. First, a prefix index is built on
the basis of the record-level matching rules expressed in the main matching rule
R. Then, the index is distributed to each worker. Each worker iterates over each
record in its partition extracting the possible candidates from the prefix index.
The rules are applied to each candidate. If more rules are in or it is possible to
avoid computing the other rules when one of them is verified, e.g., with 〈r1, r2〉
the rule (C1 ∧C2 ∧C3) is not verified since the pair passes the rule (C4 ∧C5).
Otherwise, if more rules are in and, it is possible to avoid the computation when
one of them fails, for example for the pair 〈r1, r3〉, C2 fails, so C3 has not to be
computed.

4 Experimental Evaluation

In this section we evaluate RulER with respect to JoinChain (see Section 3). In
particular, the experimental evaluation aims to answer the following questions:

Scaling Up Record-level Matching Rules

r8, r9, r10, r11

Worker 3

r4, r5, r6, r7

Worker 2

r1, r2, r3

Worker 1

B
u

ild
 P

re
fi

x
In

d
ex

es
B

u
ild

 P
re

fi
x

In
d

ex
es

Master

Prefix Index C1
Prefix Index C2

...

Prefix Index C1
Prefix Index C2

...

Worker 5

Worker 6

Prefix Indexes

Prefix Indexes

Matching rule
R = (C1 and C2 and C3) or (C4 and C5)

C1 C2 C3 C4 C5

r2

r3

r4

C1 C2 C3 C4 C5

r3

r5

r1 matches

<r1, r2>
<r1, r4>

r2

<r2, r3>
<r2, r5>

matches

r1

r3

r4

r2

r5

pop

emit

pop

emit

Fig. 4. RulER execution model: green cells represents executed and passed rules; red
cells executed that do not pass the rules; grey cells not executed rules.

Q1: What is the performance of RulER in terms of execution time compared to
JoinChain (i.e., the näıve solution)? (Section 4.2)

Q2: How does RulER scale when varying the number of machines available for
the record-level matching rule processing? (Section 4.3)

4.1 Experimental Setup

All the experiments are performed on a ten-node cluster; each node has two Intel
Xeon E5-2670v2 2.50 GHz (20 cores per node) and 128 GB of RAM, running
Ubuntu 14.04. All the software is implemented in Scala 2.11.8 and available at [8].
To assess the performance of the state-of-the-art meta-blocking methods we re-
implemented all of them for running on Apache Spark as well. We employ Apache
Spark 2.1.0, running 3 executors on each node, reserving 30 GB of memory for

(a)
0
5

10
15
20
25
30
35
40
45

Jo
in

 ti
m

e
(m

in
)

1

GraphJoin JoinChain
(b)

0
5

10
15
20
25
30
35
40
45

2

(c)
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

3

(d)
0

2

4

6

8

10

12
4

Fig. 5. Execution times of RulER and JoinChain with the rules reported in Table 1.

Gagliardelli L. et al.

the master node. We set the default parallelism to twice the number of cores as
suggested by best practice.

We employed the ombd data set [5] to evaluate the performance of RulER
and JoinChain. It contains 2.3 millions of records about movies collected from
omdbapi.com. This data set has a good variety of attributes (e.g., title, cast,
director, writer, plot, etc.) on which it is possible to define a different kind of
record-level matching rules. Moreover, it contains a sufficient number of records
that make it suitable to test the performance with Spark.

The goal of our experiments is to compare the efficiency of the algorithms,
not to find good matching rules. Moreover, with RulER it would be possible to
define an order for the application of the predicates that minimize the execution
time and the number of performed comparisons, but we do not explore this
aspect in this work.

4.2 RulER vs JoinChain

The goal of this experiment is to compare the efficiency of RulER (Algorithm
3) and JoinChain(Algorithm 2). Both algorithms can be employed to apply a
record-level matching rule M. In this experiment we apply the rules presented
in Table 1 on the omdb data set. Since both algorithms use the same functions
to extract the elements from the records, to generate the prefix indexes and to
verify the candidate pairs, we analyze here only the time requested to perform
the join operation. All the experiments are performed on a single node.

Figure 5 reports the execution times of RulER and JoinChainwith the rules
reported in Table 1. RulER is always significantly faster than JoinChain: 24×
with M1 (Figure 5(a)), 5× with M2 (Figure 5(b)), 7× with M3 (Figure 5(c)),
27× with M4 (Figure 5(d)). Moreover, Figure 6 shows the number of compar-
isons performed by both algorithms. Also in this case, RulER works better than
JoinChain performing less comparisons: 21.6 · 106 less for M1 (Figure 6(a)),
23.0 · 106 less forM2 (Figure 6(b)), 3.8 · 106 less forM3 (Figure 6(c)), 45.1 · 106

less for M3 (Figure 6(d)).
We conclude that RulER is always faster than JoinChain.

https://spark.apache.org/docs/latest/tuning.html

Rule Candidates Matches

M1 (T itle, 0.9, JS) ∧ (Cast, 0.8, JS) 1725885 53023

M2 (T itle, 0.9, JS) ∨ (Cast, 0.8, JS) 990278774 253593213

M3 ((Cast, 0.9, JS) ∧ (Director, 0.9, JS) ∧
(Writer, 0.9, JS)) ∨ (T itle, 0.9, JS)

61987445 34798235

M4 (Director, 0.9, JS) ∧ (T itle, 2, ED) 1133134 252935

Table 1. Matching rules employed in the experiments. For each rule the number of
candidate pairs obtained after the filters (i.e., prefix filter, length filter, positional filter,
see Section 2) is reported, together with the number of final matching pairs.

Scaling Up Record-level Matching Rules

(a)
1.040

1.045

1.050

1.055

1.060

1.065

1.070

1.075

1.080

Co
m

pa
ris

on
s

1e9 1

GraphJoin JoinChain
(b)

1.040

1.045

1.050

1.055

1.060

1.065

1.070

1.075

1.080 1e9 2

(c)
1.36

1.37

1.38

1.39

1.40

1.41

1.42 1e8 3

(d)
2.6

2.7

2.8

2.9

3.0

3.1

3.2 1e8 4

Fig. 6. Number of comparisons performed by RulER and JoinChain with the rules
reported in Table 1.

4.3 RulER scalability

Finally, we assess the scalability of RulER by varying the number of nodes in
the cluster (1, 3, 5, 7 and 10 nodes). For this experiment we apply the rules
described in Table 1 on the omdb data set.

1 3 5 7 10
Nodes

(a)

0
1
2
3
4
5

Sp
ee

du
p

1

1 3 5 7 10
Nodes

(b)

01
23
45
67
8

Sp
ee

du
p

2

1 3 5 7 10
Nodes

(c)

0
1
2
3
4
5

Sp
ee

du
p

3

1 3 5 7 10
Nodes

(d)

0
2
4
6
8

10
12
14

Ex
ec

. t
im

e
(m

in
) 1

1 3 5 7 10
Nodes

(e)

010203040506070

Ex
ec

. t
im

e
(m

in
) 2

1 3 5 7 10
Nodes

(f)

0
2
4
6

Ex
ec

. t
im

e
(m

in
) 3

Fig. 7. Execution time and speedup of RulER with the rules reported in Table 1.

Figure 7 shows the scalability and the speedup of the whole process. For
each step, we observe at least a 50% reduction of execution time from 1 to 3
nodes. Then, the execution times continuously decrease until reaching an overall
speedup on 10 nodes of: 5.0× for M1, 7.3× for M2, and 4.16× for M3. M2 is
the rule that takes more advantage in the increase of worker’ nodes because it
performs more comparisons than the others, as shown in Table 1.

5 Conclusion

In this work, We tackled the problem of performing record-level matching rules.
We presented two solutions to perform them on parallel and distributed systems:

Gagliardelli L. et al.

a baseline one (i.e. JoinChain) implemented by using existing solutions, and
a novel approach (i.e. RulER) that optimizes the execution of the rules. We
conducted a thorough experimental evaluation, demonstrating the efficiency of
the proposed approach, which always outperforms the baseline solution in terms
of execution time and number of comparisons. In the future, we plan to extend
our system to automatically find the optimal execution order of the predicates
that compose a rule.

References

1. Arasu, A., Ganti, V., Kaushik, R.: Efficient exact set-similarity joins. In: Proceed-
ings of the 32nd international conference on Very large data bases. pp. 918–929.
VLDB Endowment (2006)

2. Ardalan, A., Doan, A., Akella, A., et al.: Smurf: self-service string matching using
random forests. PVLDB 12(3), 278–291 (2018)

3. Bayardo, R.J., Ma, Y., Srikant, R.: Scaling up all pairs similarity search. In: Pro-
ceedings of the 16th international conference on World Wide Web. pp. 131–140.
ACM (2007)

4. Chaudhuri, S., Ganti, V., Kaushik, R.: A primitive operator for similarity joins in
data cleaning. In: 22nd International Conference on Data Engineering (ICDE’06).
pp. 5–5. IEEE (2006)

5. Das, S., Doan, A., G. C., P.S., Gokhale, C., Konda, P.: The magellan data reposi-
tory. https://sites.google.com/site/anhaidgroup/projects/data

6. Fier, F., Augsten, N., Bouros, P., Leser, U., Freytag, J.C.: Set similarity joins on
mapreduce: An experimental survey. Proceedings of the VLDB Endowment 11(10),
1110–1122 (2018)

7. Gagliardelli, L., Simonini, G., Beneventano, D., Bergamaschi, S.: Sparker: Scaling
entity resolution in spark. In: EDBT 2019. pp. 602–605 (2019)

8. Gagliardelli, L., Simonini, G., Zhu, S., Bergamaschi, S.: Sparker: an entity resolu-
tion tool for apache spark (2017), https://github.com/Gaglia88/sparker

9. Gagliardelli, L., Zhu, S., Simonini, G., Bergamaschi, S.: Bigdedup: a big data in-
tegration toolkit for duplicate detection in industrial scenarios. In: 25th Interna-
tional Conference on Transdisciplinary Engineering (TE2018). vol. 7, pp. 1015–
1023 (2018)

10. Mann, W., Augsten, N., Bouros, P.: An empirical evaluation of set similarity join
techniques. Proceedings of the VLDB Endowment 9(9), 636–647 (2016)

11. Nargesian, F., Zhu, E., Miller, R.J., Pu, K.Q., Arocena, P.C.: Data lake manage-
ment: challenges and opportunities. PVLDB 12(12), 1986–1989 (2019)

12. Simonini, G., Gagliardelli, L., Bergamaschi, S., Jagadish, H.V.: Scaling entity res-
olution: A loosely schema-aware approach. Inf. Syst. 83, 145–165 (2019)

13. Simonini, G., Papadakis, G., Palpanas, T., Bergamaschi, S.: Schema-agnostic pro-
gressive entity resolution. IEEE TKDE 31(6), 1208–1221 (2019)

14. Vernica, R., Carey, M.J., Li, C.: Efficient parallel set-similarity joins using mapre-
duce. In: Proceedings of the 2010 ACM SIGMOD International Conference on
Management of data. pp. 495–506. ACM (2010)

15. Xiao, C., Wang, W., Lin, X.: Ed-join: an efficient algorithm for similarity joins
with edit distance constraints. PVLDB 1(1), 933–944 (2008)

16. Xiao, C., Wang, W., Lin, X., Yu, J.X., Wang, G.: Efficient similarity joins for
near-duplicate detection. ACM TODS 36(3), 15 (2011)

https://github.com/Gaglia88/sparker

	Scaling Up Record-level Matching Rules

