
Information Systems 102 (2021) 101830

E
M
a

b

c

d

e

f

g

(
g
(
s
(
(

h
0

Contents lists available at ScienceDirect

Information Systems

journal homepage: www.elsevier.com/locate/is

Reproducible experiments on Three-Dimensional Entity Resolution
with JedAI
George Mandilaras a, George Papadakis a,∗, Luca Gagliardelli b, Giovanni Simonini b,
mmanouil Thanos c, George Giannakopoulos d, Sonia Bergamaschi b, Themis Palpanas e,
anolis Koubarakis a, Alicia Lara-Clares f,1, Antonio Fariña g,1

National and Kapodistrian University of Athens, Greece
University of Modena and Reggio Emilia, Italy
KU Leuven, Belgium
NCSR ‘‘Demokritos’’, Greece
University of Paris & French University Institute (IUF), France
NLP & IR Research Group, Universidad Nacional de Educación a Distancia (UNED), Spain
University of A Coruña, CITIC, Database Lab, Spain

a r t i c l e i n f o

Article history:
Received 30 October 2020
Received in revised form 3 June 2021
Accepted 9 June 2021
Available online 17 June 2021
Recommended by Juan J. Lastra-Díaz

Keywords:
Entity Resolution
Batch methods
Progressive methods
Reproducibility

a b s t r a c t

In Papadakis et al. (2020), we presented the latest release of JedAI, an open-source Entity Resolution
(ER) system that allows for building a large variety of end-to-end ER pipelines. Through a thorough
experimental evaluation, we compared a schema-agnostic ER pipeline based on blocks with another
schema-based ER pipeline based on similarity joins. We applied them to 10 established, real-world
datasets and assessed them with respect to effectiveness and time efficiency. Special care was taken
to juxtapose their scalability, too, using seven established, synthetic datasets. Moreover, we experi-
mentally compared the effectiveness of the batch schema-agnostic ER pipeline with its progressive
counterpart. In this companion paper, we describe how to reproduce the entire experimental study
that pertains to JedAI’s serial execution through its intuitive user interface. We also explain how to
examine the robustness of the parameter configurations we have selected.

© 2021 Elsevier Ltd. All rights reserved.
1. Introduction

Entity Resolution (ER) is the task of identifying matches or du-
plicates, i.e., different entity profiles that describe the same real-
world object. For example, ER should match the entity profiles
https://www.wikidata.org/wiki/Q30 and https://en.wikipedia.org/
wiki/United_States, which refer to the United States of America
in two different data sources, Wikidata2 and Wikipedia3 re-
spectively. ER constitutes a core data integration task and, thus,
numerous approaches for tackling it have been proposed in the

DOI of original article: https://doi.org/10.1016/j.is.2020.101565.
∗ Corresponding author.

E-mail addresses: gmandi@di.uoa.gr (G. Mandilaras), gpapadis@di.uoa.gr
G. Papadakis), luca.gagliardelli@unimore.it (L. Gagliardelli),
iovanni.simonini@unimore.it (G. Simonini), emmanouil.thanos@kuleuven.be
E. Thanos), ggianna@iit.demokritos.gr (G. Giannakopoulos),
onia.bergamaschi@unimore.it (S. Bergamaschi), themis@mi.parisdescartes.fr
T. Palpanas), koubarak@di.uoa.gr (M. Koubarakis), alara@lsi.uned.es
A. Lara-Clares), antonio.farina@udc.es (A. Fariña).
1 Reviewer.
2 https://www.wikidata.org.
3 https://www.wikipedia.org.
ttps://doi.org/10.1016/j.is.2021.101830
306-4379/© 2021 Elsevier Ltd. All rights reserved.
literature. Overviews of the main methods can be found in recent
books [1–4], surveys [5–7] and tutorials [8–11].

To facilitate the use of the main ER methods, we created
JedAI [12], an open-source system that allows for building end-
to-end pipelines. JedAI enables users to effectively address the ER
problem by categorizing the main methods into three orthogonal
dimensions:

1. Schema-awareness categorizes ER methods into schema-
based and schema-agnostic ones, depending on whether
they rely on schema knowledge or not.

2. Budget-awareness categorizes ER methods into
budget-agnostic ones, which operate as batch processes,
and budget-aware ones, which operate in a pay-as-you-
go manner that produces results progressively — they
maximize the detected matches within a specific budget
of temporal or computational resources.

3. Execution mode categorizes ER methods into serial and
massively parallelized ones, e.g., over Apache Spark.4

4 https://spark.apache.org

https://doi.org/10.1016/j.is.2021.101830
http://www.elsevier.com/locate/is
http://www.elsevier.com/locate/is
http://crossmark.crossref.org/dialog/?doi=10.1016/j.is.2021.101830&domain=pdf
https://www.wikidata.org/wiki/Q30
https://en.wikipedia.org/wiki/United_States
https://en.wikipedia.org/wiki/United_States
https://en.wikipedia.org/wiki/United_States
https://doi.org/10.1016/j.is.2020.101565
mailto:gmandi@di.uoa.gr
mailto:gpapadis@di.uoa.gr
mailto:luca.gagliardelli@unimore.it
mailto:giovanni.simonini@unimore.it
mailto:emmanouil.thanos@kuleuven.be
mailto:ggianna@iit.demokritos.gr
mailto:sonia.bergamaschi@unimore.it
mailto:themis@mi.parisdescartes.fr
mailto:koubarak@di.uoa.gr
mailto:alara@lsi.uned.es
mailto:antonio.farina@udc.es
https://www.wikidata.org
https://www.wikipedia.org
https://spark.apache.org
https://doi.org/10.1016/j.is.2021.101830

G. Mandilaras, G. Papadakis, L. Gagliardelli et al. Information Systems 102 (2021) 101830

t

T
T
n

Fig. 1. The three main end-to-end ER pipelines implemented by JedAI: (a) the budget- & schema-agnostic one, (b) the budget-agnostic, schema-based one, and (c)
he budget-aware, schema-agnostic one. Shaded rectangles indicate optional steps.
able 1
echnical characteristics of the dirty ER datasets. |E| stands for the number of entity profiles, NVP for the total number of name-value pairs in the dataset, |N| for the
umber of distinct attributes, |p̄| for the average profile size (in terms of name-value pairs), |D(E)| for the number of duplicate pairs, and ||E|| for the comparisons

executed by the brute-force approach.
Dcora Dcddb D10k D50k D100k D200k D300k D1M D2M

|E| 1295 9763 10,000 50,000 100,000 200,000 300,000 1,000,000 2,000,000
NVP 7166 183,072 106,108 530,854 1,061,421 2,123,728 3,184,885 10,617,729 21,238,252
|N| 12 106 12 12 12 12 12 12 12
|p̄| 5.53 18.75 10.61 10.62 10.61 10.62 10.62 10.62 10.62
|D(E)| 17,184 299 8705 43,071 85,497 172,403 257,034 857,538 1,716,102
||E|| 8.38·105 4.77·107 5.00·107 1.25·109 5.00·109 2.00·1010 4.50·1010 5.00·1011 2.00·1012
Table 2
Technical characteristics of the Clean-Clean ER datasets.

Dc1 Dc2 Dc3 Dc4 Dc5 Dc6 Dc7 Dc8

Dataset1 Rest.1 Abt Amazon DBLP Walmart DBLP DBPedia DBPedia 3.0rc
Dataset2 Rest.2 Buy Google Pr. ACM Amazon Scholar IMDB DBPedia 3.4
|E1|/|E2| 339/2,256 1076/1,076 1354/3,039 2616/2,294 2554/22,074 2516/61,353 27,615/23,182 1.19·106/2.16·106

NVP1/NVP2 1130/7,519 2568/2,308 5302/9,110 10,464/9,162 14,143/1.1·105 10,064/2·105 1.6·105/8.2·105 1.69·107/3.50·107

|N1|/|N2| 7/7 3/3 4/4 4/4 6/6 4/4 4/7 30,688/52,489
|p̄1|/|p̄2| 3.33/3.33 2.39/2.14 3.92/3.00 3.99/4.00 5.54/5.18 3.23/3.26 5.63/35.20 14.19/16.18
|D(E1 ∩ E2)| 89 1076 1104 2224 853 2308 22,863 892,579
||E1 × E2|| 7.65·105 1.16·106 4.11·106 6.00·106 5.64·107 1.54·108 6.40·108 2.58·1012
Using JedAI, we experimentally evaluated in [12] the relative
performance of the main end-to-end ER pipelines that are defined
by the three aforementioned dimensions. In this work, we focus
on serially executed pipelines of any type.

Regarding schema-awareness, the schema-agnostic pipeline
consists of the following steps, as shown in Fig. 1(a):

• Data Reading loads the data to be processed into main
memory.

• Schema Clustering is an optional step that groups together
different attributes that share syntactically similar values so
as to improve the performance of the subsequent steps. Note
that this task differs from Schema Matching, which tries to
identify the semantically matching attributes.

• Block Building aims to reduce the computational cost of the
brute-force approach, by limiting the search space to similar
entity profiles. To this end, it clusters together entity profiles
that share identical or similar signatures.

• Block Cleaning is an optional step that further curtails the
computational cost of ER by refining the output of Block
Building. Its goal is actually to discard those blocks that
are dominated by redundant and superfluous comparisons;
the former involve pairs of entities co-occurring in multiple
blocks, while the latter compare pairs of entities that do not
match.

• Comparison Cleaning is another optional step that serves
the same purpose as Block Cleaning. It offers a more time-
consuming, but more precise functionality that operates at
the level of individual comparisons.

• Entity Matching estimates the matching likelihood for all
entity pairs in the final set of blocks, using string similarity
measures.
2

• Entity Clustering models the estimated similarities as a
weighted, undirected graph and then partitions it into equiv-
alence clusters, i.e., disjoint sets of entity profiles that are
considered as matches.

• Data Writing & Evaluation allows for storing the final re-
sults and for assessing the performance of the selected ER
pipeline with respect to the main effectiveness and time
efficiency measures.

The schema-based end-to-end pipeline also starts with Data
Reading and ends with Entity Clustering and Data Writing &
Evaluation, as shown in Fig. 1(b). In between, it applies a single
step, called Similarity Join, which rapidly estimates the pairs of
entity profiles that satisfy a given matching rule, which consists
of:

1. a similarity measure,
2. the attribute on which the measure is applied, and
3. a threshold designating the minimum acceptable similarity

for two entity profiles that are considered as matching.

As an example, consider the following matching rule for biblio-
graphic entities: JaccardSim(title1, title2) > 0.8.

In [12], we also compare the batch, schema-agnostic pipeline
with its progressive counterpart, i.e., the budget-aware, schema-
agnostic pipeline, which is shown in Fig. 1(c). The only difference
from the batch pipeline is the Prioritization step, which intervenes
between Comparison Cleaning and Entity Matching. Its goal is to
define the optimal processing order of the entity pairs in the final
set of blocks so that the matching ones are detected as early as
possible.

A video demonstrating JedAI in action is available at: https:
//www.youtube.com/watch?v=OJY1DUrUAe8

https://www.youtube.com/watch?v=OJY1DUrUAe8
https://www.youtube.com/watch?v=OJY1DUrUAe8
https://www.youtube.com/watch?v=OJY1DUrUAe8

G. Mandilaras, G. Papadakis, L. Gagliardelli et al. Information Systems 102 (2021) 101830

T
C
E
i
t

d
t

i

able 3
ore information about each dataset: its reference work, its type (i.e., whether it involves real or synthetic data), the corresponding ER task (Clean-Clean or Dirty
R), the paths of its entity profiles and its golden standard files in the data repository of [13] and the original data source. We have categorized the 17 datasets
n three groups according to their type and task, following [13], which contains a different folder for each group. Note that in [13], all parts of Dc8 are provided
hrough a single zipped file, newDBPedia.tar.xz, to minimize their large size.
Dataset Type Task Path to the entity profiles file in [13] Path to the golden standard file in [13] Source

Dc1 [14] Real Clean-Clean ER Real Clean-Clean ER data/restaurant1Profiles Real Clean-Clean ER data/restaurant1IdDuplicates [15]Real Clean-Clean ER data/restaurant2Profiles

Dc2 [16] Real Clean-Clean ER Real Clean-Clean ER data/abtProfiles Real Clean-Clean ER data/abtBuyIdDuplicates [17]Real Clean-Clean ER data/buyProfiles

Dc3 [16] Real Clean-Clean ER Real Clean-Clean ER data/amazonProfiles Real Clean-Clean ER data/amazonGpIdDuplicates [17]Real Clean-Clean ER data/gpProfiles

Dc4 [16] Real Clean-Clean ER Real Clean-Clean ER data/dblpProfiles Real Clean-Clean ER data/dblpAcmProfiles [17]Real Clean-Clean ER data/acmProfiles

Dc5 [18] Real Clean-Clean ER Real Clean-Clean ER data/walmartProfiles Real Clean-Clean ER data/amazonWalmartIdDuplicates [19]Real Clean-Clean ER data/amazonProfiles2

Dc6 [16] Real Clean-Clean ER Real Clean-Clean ER data/dblpProfiles2 Clean-Clean ER data/dblpScholarIdDuplicates [17]Real Clean-Clean ER data/scholarProfiles

Dc7 [20] Real Clean-Clean ER Real Clean-Clean ER data/imdbProfiles Clean-Clean ER data/moviesIdDuplicates [21]Real Clean-Clean ER data/dbpediaProfiles

Dc8 [20] Real Clean-Clean ER Real Clean-Clean ER data/cleanDBPedia1 Clean-Clean ER data/newDBPediaMatches [21]Real Clean-Clean ER data/cleanDBPedia2

Dcora [22] Real Dirty ER Real Dirty ER data/coraProfiles Real Dirty ER data/coraIdDuplicates [23]
Dcddb [24] Real Dirty ER Real Dirty ER data/cddbProfiles Real Dirty ER data/cddbIdDuplicates [23]

D10k [25] Synthetic Dirty ER Synthetic Dirty ER data/10Kprofiles Synthetic Dirty ER data/10KIdDuplicates [21]
D50k [25] Synthetic Dirty ER Synthetic Dirty ER data/50Kprofiles Synthetic Dirty ER data/50KIdDuplicates [21]
D100k [25] Synthetic Dirty ER Synthetic Dirty ER data/100Kprofiles Synthetic Dirty ER data/100KIdDuplicates [21]
D200k [25] Synthetic Dirty ER Synthetic Dirty ER data/200Kprofiles Synthetic Dirty ER data/200KIdDuplicates [21]
D300k [25] Synthetic Dirty ER Synthetic Dirty ER data/300Kprofiles Synthetic Dirty ER data/300KIdDuplicates [21]
D1M [25] Synthetic Dirty ER Synthetic Dirty ER data/1Mprofiles Synthetic Dirty ER data/1MIdDuplicates [21]
D2M [25] Synthetic Dirty ER Synthetic Dirty ER data/2Mprofiles Synthetic Dirty ER data/2MIdDuplicates [21]
Table 4
Detailed instructions for installing and running JedAI’s Docker image on Ubuntu. The steps 1–7 install the latest version of Docker Community Edition. For more
etails, please refer to the official Docker setup page at: https://docs.docker.com/engine/install/ubuntu. The remaining steps download JedAI’s Docker image from
he Docker Hub (step 8) or from JedAI’s Mendeley data repository (step 8’) and execute it (step 9).
Step Setup instructions

Update the apt package index.
(1) $ sudo apt-get update

Install packages to allow apt to use a repository over HTTPS.
(2) $ sudo apt-get -y install apt-transport-https ca-certificates curl gnupg-agent software-properties-common

Add Docker’s official GPG key.
(3) $ curl -fsSL https://download.docker.com/linux/ubuntu/gpg | sudo apt-key add -

Set up the stable repository.
(4) $ sudo add-apt-repository ‘‘deb [arch=amd64] https://download.docker.com/linux/ubuntu $(lsb_release -cs) stable’’

Update the apt package index.
(5) $ sudo apt-get update

Install the latest version of Docker Engine.
(6) $ sudo apt-get -y install docker-ce docker-ce-cli containerd.io

Verify that Docker Engine is installed correctly.
(7) $ sudo docker run hello-world

Download the latest JedAI Docker image from Docker Hub.
(8) $ sudo docker pull gmandi/jedai-webapp:latest

Alternatively, download JedAI’s Docker image from the Mendeley dataset.

(8’) wget -O jedai.tar https://data.mendeley.com/public-files/datasets/4whpm32y47/files/79f5ccdd-e60a-4f9c-99cb-8f2d7ef0fc25/file_downloaded
$ sudo docker load < jedai.tar

Launch the JedAI Web application.
Note that parameter -Xmx4g allows JedAI to use up to 4 Gb RAM. Higher values can be used if more main memory is available.
Note also that parameter -v should point to a directory, e.g., /home/user/jedai, with user-write permissions.

(9) $ sudo docker run -e ‘JAVA_OPTIONS=-Xmx4g’ -p 8080:8080 -v /absolute/path gmandi/jedai-webapp
2. The reproducible experiments on Entity Resolution

2.1. Preliminaries

Depending on the input data, Entity Resolution is categorized
nto two main categories:

1. Clean-Clean ER receives as input two datasets, which are
individually duplicate-free (e.g., Wikipedia and Wikidata),
and its goal is to identify the matches they share.
3

2. Dirty ER receives as input one or more datasets, with at
least one of them containing duplicates in itself. Its goal
is to partition all entity profiles into equivalence clusters.

In both cases, the end-result of any end-to-end pipeline is
evaluated with respect to three effectiveness measures:

• Recall assesses the portion of existing duplicates that are
actually identified as such.

• Precision estimates the portion of entity pairs that are
marked as matches and are indeed duplicates.

https://docs.docker.com/engine/install/ubuntu
https://download.docker.com/linux/ubuntu/gpg
https://download.docker.com/linux/ubuntu
https://data.mendeley.com/public-files/datasets/4whpm32y47/files/79f5ccdd-e60a-4f9c-99cb-8f2d7ef0fc25/file_downloaded

G. Mandilaras, G. Papadakis, L. Gagliardelli et al. Information Systems 102 (2021) 101830

T
T
i

U
b
e

P
e
c
w
c
d
R
t

w

able 5
he testing platforms that were successfully used to reproduce our experiments. Note that Ubuntu− base1 was used in [12] for performing the experiments reported
n Tables 8 and 9, while Ubuntu − base1′ was only used for the experiments in Table 10.
Testing platform Type Software configuration Hardware configuration Tested by

Ubuntu − base1 Server Ubuntu 14.04.5 LTS 1 Intel Xeon E5-4603 v2 @2.20 GHz, AuthorsOpenJDK 1.8.0 128 Gb DDR3 RAM, 1.6 Tb mechanical disk

Ubuntu − base1′ Server Ubuntu 14.04 LTS 1 Intel Xeon E5-2670 v2 @2.50 GHz, AuthorsJava 1.8.0 80 GB DDR3 RAM, 1 Tb mechanical disk

Ubuntu − base2 Server Ubuntu 14.04.6 LTS 1 AMD Opteron 6320 @2.80 GHz, Authors
Docker 19.03.13, Java 1.8.0 128 Gb DDR3 RAM, 1.6 Tb mechanical disk

Ubuntu − base3 Laptop Ubuntu 18.04.5 LTS 1 Intel Core i7-4710MQ @2.50 GHz, AuthorsDocker 20.10.5, Java 1.8.0 16 Gb DDR3 RAM, 120 Gb SSD

Ubuntu − base4 Laptop Ubuntu 20.04 LTS 1 Intel Core i5-1035G1 @1.00 GHz, AuthorsDocker 19.03.8, OpenJDK 1.8.0 4 Gb DDR4 RAM, 32 Gb flash drive

Ubuntu − base5 Laptop Linux Mint 19.1 Tessa 1 Intel Core i7-3770 @3.40 GHz, AuthorsDocker 19.03.8, Java 1.8.0 16 Gb DDR3 RAM, 1 Tb mechanical disk

Ubuntu − base6 Laptop Ubuntu 20.04.2 LTS Intel Core i7-9750H @2.60 GHz, ReviewerDocker 19.03.14, OpenJDK 1.8.0 32 GB RAM, 2.5 Tb mechanical disk

Ubuntu − base7 Server Ubuntu 20.04.2 LTS 1 Intel Xeon Bronze 3204 @1.9 GHz, Reviewer512 Gb DDR4 RAM,120 Gb mechanical disk

Ubuntu − base8 Server Ubuntu 16.04.7 LTS 1 Intel Core i7 8700k @3.7 GHz, 64 Gb swap, Reviewer64 Gb DDR4 RAM, 3 Tb mechanical disk

Ubuntu − base9 Laptop Ubuntu 20.04.1 LTS 1 Intel Core i5 8265u @1.6 GHz, 16 DDR4 RAM, Reviewerno swap, 34 Gb virtual disk over SSD

Windows − base1 Laptop Windows 10 Pro v. 20H2, 1 Intel Core i5-1035G1 @1.00 GHz, AuthorsDocker 20.10.5, Java 15.0.1 6 Gb DDR4 RAM, 240 Gb SSD
Table 6
The aggregate time required to run all the experiments included in Tables 8–10
(that could be completed in less than 40 h) for each testing platform, while
reproducing most experiments from [12]. The testing platforms Ubuntu− base3,
buntu− base4, Ubuntu− base5, Ubuntu− base6, Ubuntu− base9 and Windows−
ase1 were limited in some experiments by the available main memory, thus
xhibiting lower aggregate running times.
Run Testing platform Running time Tested by

1 Ubuntu − base1 5526 min ≈ 92.1 h Authors
2 Ubuntu − base2 6832 min ≈ 113.9 h Authors
3 Ubuntu − base3 2678 min ≈ 44.6 h Authors
4 Ubuntu − base4 187 min ≈ 3.1 h Authors
5 Ubuntu − base5 2198 min ≈ 36.6 h Authors
6 Ubuntu − base6 1428 min ≈ 23.8 h Reviewer
7 Ubuntu − base7 6393 min ≈ 106.5 h Reviewer
8 Ubuntu − base8 3212 min ≈ 53.5 h Reviewer
9 Ubuntu − base9 1731 min ≈ 28.8 h Reviewer
10 Windows − base1 1743 min ≈ 29.1 h Authors

• F-Measure is the harmonic mean of Recall and Precision.

The progressive pipelines are additionally assessed through
rogressive Recall, which quantifies the evolution of recall as more
ntity pairs are compared. We actually consider the area under its
urve (AUC), which is derived from a two-dimensional diagram,
here horizontal axis corresponds to the number of executed
omparisons and the vertical one to the number of detected
uplicates. The larger (the area under the curve of) Progressive
ecall is, the earlier are the matches identified and the better is
he progressive pipeline.

All effectiveness measures are defined in the interval [0, 1],
ith higher values corresponding to higher effectiveness.
The time efficiency of an end-to-end pipeline is measured

through its run-time, i.e., the time that intervenes between re-
ceiving the input entity profiles and producing the end result.

Note that we also provide the minimum amount of main
memory that is required to successfully run each test in a way
that approximates the lowest possible running time by mini-
mizing the impact of the garbage collector. The reported values
correspond to the −Xmx parameter when running each experi-
ment as a Java process, independently of Docker and the browser,
which raise additional memory requirements.
4

2.2. Sets of experiments

The experimental analysis of [12] used 17 datasets. Each of
them consists of one or two sets of entity profiles, in the case
of Dirty and Clean-Clean ER, respectively, as well as a golden
standard, i.e., the complete ground-truth of the actual duplicate
entity profiles. They are all publicly available in the form of
Java serialized objects as a Mendeley dataset [13] and through
JedAI’s repository.5 Their technical characteristics are reported in
Tables 1 and 2, which are the same as Tables 1 and 2 in [10], but
are repeated here for convenience. Additional information about
all datasets is provided in Table 3.

Our experiments are divided into three sets as follows:

1. The Performance Tests examine the relative performance of
the two budget-agnostic pipelines - the schema-based and
the schema-agnostic one.

2. The Scalability Tests examine how the performance of the
two budget-agnostic pipelines evolves as the size of the
input data increases.

3. The Budget-awareness Tests examine the relative perfor-
mance of the two forms of the schema-agnostic pipeline:
the budget-agnostic and the budget-aware.

Below, we describe every set of experiments in more detail.

Performance tests. These experiments, which are reported in Ta-
ble 4 of [12], compare the schema- and budget-agnostic pipeline
with its schema-based counterpart over 10 real-world datasets.
Two of them pertain to Dirty ER (Dcora and Dcddb) and the rest
to Clean-Clean ER (Dc1-Dc8). The goal of these experiments is
to evaluate both the relative effectiveness and the relative time
efficiency of these pipelines. For the schema-agnostic pipeline, we
consider two configurations:

1. the best one, which uses the parameters that maximize the
F-Measure per dataset, and

2. the default one, which uses the default parameters for each
method in the pipeline, thus being the same for all datasets.

5 https://github.com/scify/JedAIToolkit.

https://github.com/scify/JedAIToolkit

G. Mandilaras, G. Papadakis, L. Gagliardelli et al. Information Systems 102 (2021) 101830

‘
e

Fig. 2. The screens of JedAI’s Web application for reproducing all single core experiments in [12]: (a) The initial screen of JedAI’s Web application. The button
New Workflow’ should be pressed. (b) The second screen, which defines the execution mode. The button ‘Desktop Mode’ should be pressed for the single-core
xperiments. (c) The third screen, which defines the type of the end-to-end pipeline. The button ‘Run tests’ should be pressed to start the reproduction of the

experiments. (d) The fourth screen, which defines the experimental settings we want to reproduce with respect to the type of experiments, the type of ER, the type
of end-to-end pipeline and the dataset. (e) The ‘Confirm Configuration’ screen that summarizes the experimental settings we have selected. (f) The final screen,
‘Workflow Execution’, which presents the performance of the selected end-to-end pipeline. (g) The screen showing the area under the curve of Progressive Recall
(AUC) in case of Budget-awareness Tests. (h) The benchmark screen summarizing the performance of all pipelines executed so far with respect to Precision, Recall,
F-Measure, Run-time and Progressive Recall (AUC), in case of Budget-awareness Tests.
For the schema-based pipeline, we exclusively consider the best
configuration per dataset, which maximizes F-Measure.

Note that these tests involve two baseline systems that have
been developed by other research groups, Magellan [26] and
5

DeepMatcher [27]. Due to their human-in-the-loop approach and

the lack of necessary details, we could not test their performance

ourselves. Instead, we reported their top F-measure per dataset

G. Mandilaras, G. Papadakis, L. Gagliardelli et al. Information Systems 102 (2021) 101830

o
t
t
d
T
D
t

Table 7
Detailed instructions for reproducing all single-core experiments in [12] using the graphical user interface of JedAI’s Web
application.
Step Reproduction instructions

After launching JedAI’s Docker image with the last command in Table 4:

(1) Open a browser at http://localhost:8080.
If Docker runs on a server, replace ‘localhost with its URL. The host port 8080 was arbitrarily specified by the last
command in Table 4 and can be changed at will. JedAI’s homepage, depicted in Fig. 2(a), shows up.

(2) Press the button ‘New Workflow’.
The window ‘Choose New Workflow mode’ in Fig. 2(b) pops up.

(3) Press the button ‘Desktop Mode’.
Because we are interested in the serial execution of JedAI’s experiments.
The Web page ‘Select Workflow’ in Fig. 2(c) shows up.

(4) Press the button ‘Run tests’ at the bottom right corner.
The window ‘Select Test to execute’ in Fig. 2(d) shows up.
The web application is already equipped with the parameters of all experiments.
Thus, any experiment in [12] can be reproduced simply by selecting it from the menus of Fig. 2(d).

(5) In ‘Test Type’, select ‘Performance Test’, ‘Scalability Test’ or ‘Budget-awareness Test’.
The options for the rest of the selection criteria in the same window are activated.

(6) In ‘ER Mode’, select ‘Clean-Clean ER’ or ‘Dirty ER’.
For Scalability Tests, only ‘Dirty ER’ is available.

(7) In ‘Workflow Type’, select ‘Best Schema-agnostic’, ‘Default Schema-agnostic’ or ‘Schema-aware’ pipelines.
For Scalability Tests, only the last two options are available.

(8) In ‘Datasets’, select one among the available datasets in Tables 1–3.

(9) Press the button ‘Confirm’.
JedAI loads the selected pipeline with the parameter configuration corresponding to the selected dataset.
One Web page for each step in the selected pipeline (see Fig. 1) shows up.

(10) Press the button ‘Next’ in the window of each pipeline step to proceed to the next one.
After going through all pipeline steps, the Web page ‘Confirm Configurations’ in Fig. 2(e) shows up.

(11) Press the button ‘Confirm’.
The Web page ‘Workflow Execution’ shows up.

(12) Press the button ‘Execute Workflow’.
The selected experiment is carried out. Upon completion, the respective performance is reported in the same window
with respect to recall, Precision, F-Measure and running time, as in Fig. 2(f).

(13) In case of Budget-awareness Tests, press the button ‘Show Plot ’ at the bottom left corner.
A window similar to the one in Fig. 2(g) shows up, depicting Progressive recall along with the area under its curve.

(14) Press JedAI logo at the top of the window to return to the first screen and proceed with the next test.
in [27], among all configurations and dataset versions. For this
reason, we disregard both systems in the following.

Scalability tests. These experiments are described in the diagrams
f Figure 7 in [12], comparing again the two budget-agnostic end-
o-end pipelines. In this case, though, the goal is to assess how
heir time efficiency and effectiveness evolve as the size of the
ata increase from several thousand to few million entity profiles.
o this end, we use seven datasets that pertain exclusively to
irty ER; their names indicate their size, i.e., the number of
heir entity profiles: D10K , D50K , D100K , D200K , D300K , D1M and
D2M . These datasets contain synthetic census data, i.e., infor-
mation about individuals that has been enriched with various
forms of artificial noise (see [12] for more details). For both
pipelines, we consider a single configuration that is applied to
all datasets: the default configuration for the schema-agnostic
pipeline and the matching rule that consistently achieves rea-
sonable performance across all datasets for the schema-based
one, i.e., JaccarSim(all_tokens_1, all_tokens_2) > 0.4, executed by
PPJoin and followed by Connected Components with the same
similarity threshold.

Budget-awareness tests. These experiments are reported in the
diagrams of Figure 8 in [12]. They compare the budget- and
schema-agnostic pipeline with its budget-aware counterpart
across the same datasets as the Performance Tests - except the
largest one, Dc8. For each dataset, the parameter configuration
that corresponds to the optimal performance of the budget- and
schema-agnostic pipeline is also used for the common meth-
ods of its budget-aware version. In this way, these tests assess
6

the impact of the Prioritization step, which constitutes the sole
difference between the two pipelines. We evaluate the time
efficiency of the two workflows through their running times and
the effectiveness through the area under their Progressive Recall.

2.3. Experimental setup in our primary paper

All single-core experiments in [12] were implemented in Java
8 and can be reproduced through JedAI’s Docker image, which
is publicly available.6 The only requirement is to have Docker7
installed. Table 4 provides detailed instructions for installing the
latest version of Docker on Ubuntu. A similar procedure is re-
quired for other Linux distributions, like Debian,8 Fedora9 and
CentOS.10 JedAI’s Docker image is expected to run seamlessly in
all these cases. Upon successful completion of these commands,
JedAI’s Web application appears in a browser at: http://localhost:
8080.

Note that the option -e JAVA_OPTIONS=‘-Xmx4g’ deter-
mines that 4 Gigabytes (GB) of RAM memory is allocated to Java
to run JedAI’s Web application. This is an optional parameter,
as the vast majority of our experiments can be run with much
fewer memory, as indicated by the memory requirements that are
reported in Tables 8–10 for each experiment. In our tests, though,

6 https://hub.docker.com/repository/docker/gmandi/jedai-webapp.
7 https://www.docker.com.
8 See https://docs.docker.com/engine/install/debian for detailed instructions.
9 See https://docs.docker.com/engine/install/fedora for detailed instructions.

10 See https://docs.docker.com/engine/install/centos for detailed instructions.

http://localhost:8080
http://localhost:8080
http://localhost:8080
http://localhost:8080
https://hub.docker.com/repository/docker/gmandi/jedai-webapp
https://www.docker.com
https://docs.docker.com/engine/install/debian
https://docs.docker.com/engine/install/fedora
https://docs.docker.com/engine/install/centos

G. Mandilaras, G. Papadakis, L. Gagliardelli et al. Information Systems 102 (2021) 101830

T
T
a
a

b
t
t
w
h

f

t

able 8
he results of the performance tests over all real datasets across all testing platforms. For each pipeline, the effectiveness measures per dataset are common among
ll testing platforms. Only the running times differ among them. IM indicates a test that was not carried out due to insufficient memory. Note that Precision, Recall
nd F-Measure are rounded to three decimal places, memory requirements to two decimal places and running times to one decimal place.

Clean-Clean ER Dirty ER

Restau- Abt Amazon DBLP Walmart DBLP IMDB DBP-3.0rc Dcora Dcddb
rants Buy GP ACM Amazon Scholar DBPedia DBP-3.4
Dc1 Dc2 Dc3 Dc4 Dc5 Dc6 Dc7 Dc8

(a) Default configuration of the budget- and schema-agnostic pipeline

Precision 0.473 0.902 0.544 0.975 0.310 0.887 0.908 0.806 0.876 0.874
Recall 1.000 0.836 0.653 0.988 0.878 0.952 0.834 0.819 0.816 0.856
F-Measure 0.643 0.867 0.594 0.981 0.459 0.919 0.869 0.813 0.845 0.865

Memory (Gb) 0.02 0.04 0.19 0.09 0.32 0.75 0.99 105.00 0.17 1.45

Ubuntu − base1 1.1 s 1.3 s 12.0 s 2.0 s 8.3 s 23.5 s 91.0 s 14.5 h 5.5 s 65.0 s
Ubuntu − base2 0.6 s 1.3 s 15.1 s 1.3 s 6.2 s 28.9 s 113.0 s 22.1 h 2.7 s 61.8 s
Ubuntu − base3 0.5 s 1.0 s 11.2 s 0.9 s 4.4 s 10.2 s 68.0 s IM 1.8 s 30.6 s
Ubuntu − base4 0.2 s 0.6 s 8.6 s 0.7 s 3.5 s 9.2 s 53.4 s IM 1.8 s 23.4 s
Ubuntu − base5 0.3 s 0.6 s 8.2 s 0.8 s 3.7 s 9.1 s 48.5 s IM 1.3 s 23.9 s
Ubuntu − base6 0.1 s 0.6 s 8.3 s 0.7 s 3.0 s 7.7 s 51.9 s IM 1.3 s 21.7 s
Ubuntu − base7 0.2 s 1.3 s 15.9 s 1.2 s 5.3 s 15.3 s 98.4 s 16.8 h 2.4 s 49.0 s
Ubuntu − base8 0.2 s 0.6 s 7.9 s 0.6 s 2.5 s 6.5 s 39.5 s IM 1.0 s 18.8 s
Ubuntu − base9 0.4 s 1.1 s 16.1 s 1.0 s 5.1 s 11.8 s 75.5 s IM 1.8 s 30.8 s

Windows − base1 0.3 s 1.0 s 8.7 s 0.9 s 4.2 s 18.2 s 98.6 s IM 1.7 s 26.7 s

(b) Best configuration of the budget- and schema-agnostic pipeline

Precision 0.788 0.946 0.576 0.993 0.590 0.946 0.905 0.841 0.912 0.869
Recall 1.000 0.854 0.646 0.992 0.753 0.949 0.876 0.821 0.819 0.886
F-Measure 0.881 0.898 0.609 0.992 0.662 0.948 0.890 0.831 0.863 0.877

Memory (Gb) 0.03 0.04 0.07 0.04 0.12 0.98 0.80 64.00 0.02 1.47

Ubuntu − base1 1.0 s 1.1 s 4.5 s 1.3 s 5.3 s 30.0 s 46.0 s 12.7 h 0.9 s 65.7 s
Ubuntu − base2 0.7 s 1.1 s 6.1 s 0.8 s 12.9 s 45.1 s 49.5 s 21.9 h 0.8 s 70.0 s
Ubuntu − base3 0.5 s 0.8 s 5.0 s 0.6 s 2.4 s 16.4 s 29.0 s IM 0.6 s 32.4 s
Ubuntu − base4 0.5 s 0.7 s 4.1 s 0.4 s 1.8 s 12.6 s 23.9 s IM 0.4 s 25.6 s
Ubuntu − base5 0.4 s 0.6 s 3.2 s 0.7 s 2.0 s 12.2 s 24.5 s IM 0.5 s 30.8 s
Ubuntu − base6 0.1 s 0.5 s 3.1 s 0.5 s 1.7 s 13.1 s 21.8 s IM 0.3 s 23.3 s
Ubuntu − base7 0.1 s 0.6 s 7.3 s 0.8 s 2.8 s 23.9 s 41.7 s 16.5 h 0.7 s 51.3 s
Ubuntu − base8 0.1 s 0.4 s 3.5 s 0.4 s 1.2 s 11.2 s 18.6 s 12.9 h 0.3 s 24.5 s
Ubuntu − base9 0.2 s 0.4 s 5.9 s 0.6 s 2.2 s 16.8 s 34.8 s IM 0.3 s 34.9 s

Windows − base1 0.2 s 0.6 s 4.8 s 0.5 s 2.3 s 18.7 s 28.9 s IM 0.5 s 32.5 s

(c) Best configuration of the budget-agnostic, schema-based pipeline

Precision 0.755 0.884 0.663 0.978 0.829 0.953 0.931 0.833 0.751 0.278
Recall 0.933 0.438 0.423 0.932 0.552 0.775 0.499 0.370 0.859 0.719
F-Measure 0.834 0.585 0.517 0.954 0.663 0.855 0.649 0.512 0.802 0.401

Memory (Gb) 0.01 0.02 0.02 0.02 0.06 0.11 0.42 30.00 0.02 0.06

Ubuntu − base1 0.2 s 0.4 s 0.5 s 0.6 s 0.5 s 14.0 s 7.7 s 15.2 min 0.3 s 0.6 s
Ubuntu − base2 0.2 s 0.2 s 0.2 s 0.5 s 0.2 s 13.8 s 6.9 s 12.4 min 0.3 s 0.3 s
Ubuntu − base3 0.2 s 0.3 s 0.3 s 0.2 s 0.2 s 10.6 s 5.2 s IM 0.2 s 0.3 s
Ubuntu − base4 0.1 s 0.1 s 0.1 s 0.1 s 0.1 s 10.2 s 3.5 s IM 0.2 s 0.3 s
Ubuntu − base5 0.1 s 0.1 s 0.2 s 0.2 s 0.3 s 7.4 s 3.4 s IM 0.2 s 0.3 s
Ubuntu − base6 0.1 s 0.1 s 0.2 s 0.3 s 0.1 s 6.3 s 3.3 s IM 0.1 s 0.3 s
Ubuntu − base7 0.1 s 0.2 s 0.2 s 0.2 s 0.2 s 14.2 s 7.7 s 11.0 min 0.1 s 0.2 s
Ubuntu − base8 0.1 s 0.1 s 0.1 s 0.1 s 0.1 s 5.9 s 3.2 s 5.2 min 0.1 s 0.1 s
Ubuntu − base9 0.1 s 0.1 s 0.2 s 0.2 s 0.1 s 16.5 s 5.6 s IM 0.1 s 0.2 s

Windows − base1 0.1 s 0.1 s 0.2 s 0.2 s 0.1 s 16.5 s 5.6 s IM 0.1 s 0.2 s
we noticed that 4GB are more suitable for ensuring Docker’s
stability. Otherwise, it needs restarting after some tests. When
experimenting with larger datasets, it is actually recommended
to devote all or most of the available memory to Docker so as
to avoid out-of-memory exceptions or excessively large running
times, due to the overuse of the garbage collector.

Note also that the option -v /absolute/path is necessary
ecause JedAI’s Docker starts by downloading all datasets from
he Mendeley data repository [13]. Thus, this option determines
he directory on the host system (e.g., /home/user/jedai),
here Docker will store and unpack the dataset files as long as it
as user-write permissions.
It is also worth noting that in the option -p 8080:8080, the

irst 8080 refers to the host port, and could be replaced by any
other free port in the host. Docker will map the first port 8080 to
he http port (second 8080) from the docker container.
7

Finally, it is worth noting that it is also possible to use Docker
on Windows 10. The installation is a straightforward procedure11
that merely needs some additional steps.12 After the successful
installation, all experiments can be seamlessly run, without any
performance issue. Indeed, one of our testing platforms runs on
Windows 10 Pro (Windows − base1 in Table 5).

2.4. System requirements and performance evaluation

All single-core experiments in [12] can be reproduced on any
Java 8 compliant platform, which practically includes all major

11 See https://docs.docker.com/docker-for-windows/install for detailed in-
structions.
12 See https://docs.docker.com/docker-for-windows/wsl for more details.

https://docs.docker.com/docker-for-windows/install
https://docs.docker.com/docker-for-windows/wsl

G. Mandilaras, G. Papadakis, L. Gagliardelli et al. Information Systems 102 (2021) 101830

t
t
w
r
b
s
c
T

b
i
w
N
o
C

e
t
n
t
a
a

J

3

Table 9
The results of the scalability tests over the seven synthetic datasets across all testing platforms. For each pipeline, the effectiveness
measures per dataset are common among all testing platforms. Only the running times differ among them. IM indicates a test that
was not carried out due to insufficient memory. Note that Precision, Recall and F-Measure are rounded to three decimal places,
memory requirements to two decimal places and running times to one decimal place.

D10k D50k D100k D200k D300k D1M D2M

(a) Default configuration of the budget- and schema-agnostic pipeline

Precision 0.948 0.899 0.887 0.844 0.866 0.868 0.836
Recall 0.994 0.989 0.983 0.978 0.973 0.960 0.954
F-Measure 0.970 0.942 0.933 0.906 0.916 0.911 0.891

Memory (Gb) 0.12 0.80 3.10 6.20 7.20 15.00 25.00

Ubuntu − base1 1.8 s 12.8 s 35.1 s 120.2 s 193.1 s 32.3 min 147.1 min
Ubuntu − base2 1.6 s 11.4 s 37.3 s 130.8 s 199.3 s 33.4 min 145.4 min
Ubuntu − base3 1.4 s 5.2 s 19.8 s 51.9 s 141.9 s 22.1 min IM
Ubuntu − base4 0.9 s 4.3 s 10.7 s 54.3 s IM IM IM
Ubuntu − base5 1.0 s 3.7 s 11.5 s 37.8 s 77.0 s 16.9 min IM
Ubuntu − base6 0.7 s 4.2 s 10.8 s 36.7 s 114.6 s – –
Ubuntu − base7 0.8 s 6.3 s 19.9 s 63.4 s 148.0 s 24.2 min 93.5 min
Ubuntu − base8 0.5 s 3.6 s 9.0 s 27.1 s 71.3 s 12.9 min 51.4 min
Ubuntu − base9 1.5 s 8.2 s 15.7 s 46.9 s 118.4 s 22.6 min IM

Windows − base1 1.4 s 5.0 s 10.8 s 47.2 s 232.5 s IM IM

(b) Best configuration of the budget-agnostic, schema-based pipeline

Precision 1.000 1.000 1.000 1.000 1.000 1.000 1.000
Recall 0.593 0.598 0.602 0.600 0.602 0.603 0.602
F-Measure 0.744 0.749 0.752 0.750 0.751 0.752 0.752

Memory (Gb) 0.03 0.10 0.30 1.15 1.75 11.00 16.00

Ubuntu − base1 7.0 s 137.2 s 695.3 s 55.6 min 140.3 min 17.8 h > 40 h
Ubuntu − base2 5.3 s 120.3 s 534.8 s 49.6 min 96.9 min 19.3 h > 40 h
Ubuntu − base3 4.0 s 89.4 s 367.8 s 26.3 min 69.4 min 13.0 h > 40 h
Ubuntu − base4 3.9 s 74.6 s 316.5 s 24.0 min 48.4 min IM IM
Ubuntu − base5 3.6 s 67.9 s 298.2 s 21.3 min 55.9 min 10.3 h > 40 h
Ubuntu − base6 3.8 s 78.6 s 341.5 s 23.6 min 57.1 min – > 40 h
Ubuntu − base7 7.9 s 172.2 s 704.1 s 49.5 min 111.9 min 19.8 h > 40 h
Ubuntu − base8 3.1 s 140.1 s 375.2 s 22.3 min 49.7 min 10.2 h 39.8 h
Ubuntu − base9 5.3 s 96.8 s 376.4 s 28.7 min 64.5 min 10.8 h > 40 h

Windows − base1 4.3 s 87.3 s 376.7 s 26.7 min 56.8 min IM IM
Linux distributions. Our experiments have been successfully re-
produced on all testing platforms reported in Table 5, with the
aggregate running times that are reported in Table 6. Note that
in all systems, a single CPU core was used for each experiment.

Our original configuration corresponds to Ubuntu − base1 for
he Performance and Scalability Tests and to Ubuntu − base1′ for
he Budget-awareness Tests. Ubuntu−base2 is a similar server but
ith a different CPU that accounts for significant diversity in the
unning times. A more important difference is that in Ubuntu −

ase1 and Ubuntu − base1′, all experiments were run through
cript files,13 whereas in Ubuntu − base2, the experiments were
arried out through the user interface of JedAI’s Web application.
he same applies to all other systems.
Among the other platforms, it is worth stressing that Ubuntu−

ase4 consists of a bootable USB stick that runs a live Ubuntu
nstance on top of a Windows 10 laptop. The only implication
as that it required a different approach for installing Docker.14
o performance issue arose. In fact, Ubuntu − base4 is often one
f the fastest testing platforms, due to the newer generation of
PU and RAM technology.
Regarding the minimum system specifications required by our

xperiments, the size of the hard disk plays a minor role. Given
hat all experiments are executed in main memory and produce
o output files, the hard disk requirements are determined by
he space occupied by the Java JDK and the Docker installation
s well as the size of JedAI’s Docker image, which also includes
ll datasets. In total, this amounts to around 4 GB, assuming

13 The source code of all tests is available at: https://github.com/scify/
edAIToolkit/tree/master/src/test/java/org/scify/jedai/version3.
14 For more details, please refer to https://stackoverflow.com/questions/
0248794/run-docker-in-ubuntu-live-disk.
8

an underlying blank Ubuntu installation. Note, though, that this
space is occupied whenever command 9 in Table 4 is executed.
To recover the space occupied after multiple runs, we can:

• Remove the existing Docker containers:
sudo docker container ls -a | grep gmandi
obtains the IDs of JedAI’s containers, and
sudo docker rm -f containerID
removes a given container.

• Remove JedAI’s Docker image:
sudo docker rmi gmandi/jedai-webapp.15

• Finally, recover disk space for unused volumes:
sudo docker volume prune.

Regarding the size of main memory (RAM), the vast majority
of experiments require less than 2 Gb, as reported in Tables 8–10,
but 4 Gb are suggested to ensure Docker’s stability, as explained
above. However, the experiments with the two largest synthetic
datasets, D1M and D2M , require up to 25 Gb, whereas the largest
real dataset, Dc8, requires up to 105 Gb. The corresponding exper-
iments cannot be run on most testing platforms that are equipped
with 16 Gb RAM or less, namely Ubuntu− base3, Ubuntu− base4,
Ubuntu− base5, Ubuntu− base6, Ubuntu− base9 and Windows−

base1. Below, we report in detail the memory requirements of
every experiment, highlighting the experiments that were not
feasible, due to insufficient main memory in the testing platforms.

Finally, it is worth noting that the times reported in Table 6
merely correspond to the time taken by each system to run all
experiments. Given that each experiment is carried out through

15 Alternatively, run sudo docker images to obtain the IDs of the images,
and then use sudo docker rmi imageID to remove them.

https://github.com/scify/JedAIToolkit/tree/master/src/test/java/org/scify/jedai/version3
https://github.com/scify/JedAIToolkit/tree/master/src/test/java/org/scify/jedai/version3
https://stackoverflow.com/questions/30248794/run-docker-in-ubuntu-live-disk
https://stackoverflow.com/questions/30248794/run-docker-in-ubuntu-live-disk

G. Mandilaras, G. Papadakis, L. Gagliardelli et al. Information Systems 102 (2021) 101830

T
T
t
a
P
a

able 10
he results of the Budget-awareness Tests over all real datasets across all testing platforms. For each pipeline, effectiveness is measured through the area under
he curve of Progressive Recall, which is common among all testing platforms in each dataset only for the budget-aware pipeline. Its budget-agnostic counterpart
rranges all pairwise comparisons in a random order, thus yielding a Progressive Recall that differs in each run and, thus, among the testing platforms. Note that
recision, Recall and F-Measure are rounded to three decimal places, memory requirements to two decimal places and running times to one decimal place. Note
lso that Dc8 is omitted, as in [12], due to the excessively large running time and the very high memory requirements of the corresponding experiment.

Clean-Clean ER Dirty ER

Restau Abt Amazon DBLP Walmart DBLP IMDB Dcora Dcddb
rants Buy GP ACM Amazon Scholar DBPedia
Dc1 Dc2 Dc3 Dc4 Dc5 Dc6 Dc7

(a) Budget-aware, schema-agnostic pipeline

Progressive recall 0.709 0.689 0.573 0.866 0.635 0.930 0.616 0.416 0.585

Memory (Gb) 0.06 0.08 0.30 0.16 0.65 4.00 6.00 0.30 3.50

Ubuntu − base1′ 0.5 s 13.7 s 1.8 min 32.9 s 5.2 min 46.3 min 18.4 h 16.9 s 79.3 s
Ubuntu − base2 0.6 s 19.0 s 3.4 min 49.8 s 7.8 min 68.2 min 20.1 h 15.8 s 96.5 s
Ubuntu − base3 0.4 s 14.6 s 2.2 min 48.5 s 7.4 min 54.1 min 12.7 h 12.2 s 73.5 s
Ubuntu − base4 0.3 s 12.5 s 1.5 min 35.7 s 6.1 min 40.7 min IM 9.9 s 55.6 s
Ubuntu − base5 0.6 s 12.2 s 2.0 min 31.5 s 5.1 min 37.2 min 10.8 h 9.4 s 49.9 s
Ubuntu − base6 0.3 s 11.9 s 1.4 min 33.5 s 4.9 min 34.5 min 9.6 h 10.1 s 53.8 s
Ubuntu − base7 0.4 s 20.9 s 2.7 min 63.1 s 9.4 min 64.7 min 22.0 h 19.6 s 107.8 s
Ubuntu − base8 0.3 s 10.2 s 1.2 min 30.0 s 4.2 min 28.7 min 9.5 h 8.8 s 45.8 s
Ubuntu − base9 0.8 s 16.6 s 2.2 min 48.8 s 6.9 min 38.8 min 13.9 h 14.3 s 66.9 s

Windows − base1 0.5 s 14.9 s 1.9 min 20.4 s 8.3 min 52.4 min 11.3 h 15.3 s 80.0 s

(b) Budget- and schema-agnostic pipeline

Memory (Gb) 0.09 0.20 0.20 0.35 0.65 4.00 6.00 0.30 3.50

Progressive recall 0.489 0.418 0.337 0.491 0.386 0.478 0.435 0.661 0.451
Ubuntu − base1′ 1.6 s 19.2 s 2.4 min 34.4 s 11.6 min 51.0 min 20.8 h 30.4 s 13.5 min

Progressive recall 0.491 0.400 0.341 0.489 0.383 0.479 0.436 0.665 0.446
Ubuntu − base2 0.5 s 15.5 s 2.6 min 40.4 s 13.6 min 61.5 min 21.8 h 18.5 s 13.6 min

Progressive recall 0.481 0.403 0.328 0.488 0.397 0.474 0.437 0.659 0.466
Ubuntu − base3 0.4 s 12.4 s 1.9 min 31.4 s 12.6 min 49.5 min 14.5 h 15.4 s 11.9 min

Progressive recall 0.521 0.405 0.335 0.495 0.371 0.488 IM 0.668 0.464
Ubuntu − base4 0.5 s 10.2 s 1.6 min 25.9 s 9.7 min 36.7 min IM 10.4 s 7.8 min

Progressive recall 0.487 0.402 0.322 0.488 0.383 0.475 0.435 0.678 0.482
Ubuntu − base5 0.5 s 11.1 s 1.4 min 25.8 s 8.8 min 37.3 min 12.2 h 10.8 s 8.0 min

Progressive recall 0.483 0.399 0.326 0.498 0.374 0.476 0.436 0.666 0.460
Ubuntu − base6 0.2 s 10.7 s 1.6 min 28.9 s 9.0 min 35.6 min 11.1 h 10.6 s 8.0 min

Progressive recall 0.457 0.406 0.344 0.501 0.381 0.463 0.436 0.661 0.510
Ubuntu − base7 0.4 s 21.9 s 2.9 min 57.4 s 19.0 min 72.7 min 23.3 h 21.8 s 15.9 min

Progressive recall 0.528 0.416 0.319 0.502 0.376 0.464 0.435 0.668 0.488
Ubuntu − base8 0.2 s 9.0 s 1.4 min 25.1 s 7.5 min 29.8 min 10.8 h 9.9 s 6.9 min

Progressive recall 0.453 0.414 0.330 0.490 0.379 0.476 0.436 0.669 0.463
Ubuntu − base9 0.3 s 14.4 s 2.4 min 39.7 s 12.4 min 46.4 min 14.5 h 18.0 s 11.9 min

Progressive recall 0.520 0.396 0.334 0.498 0.381 0.469 0.434 0.659 0.453
Windows − base1 0.7 s 14.5 s 2.2 min 37.9 s 13.8 min 50.8 min 13.5 h 15.1 s 24.3 min
the user interface of JedAI’s Web application (i.e., they are not
executed through a script), significant time is taken to manually
navigate through all menus. Among them, the Entity Matching
step requires additional time to transform the selected dataset
into the textual representation that is suitable for assessing entity
similarity (e.g., by tokenizing all attribute values into character
n-grams). This time, which is negligible only for the smallest
datasets, is not added to the overall running times in Table 6,
which disregard completely the navigation time.

2.5. Obtaining and compiling our source code

The source code for JedAI version 3.0, which is used in [12]
and in the present experimental study, has been publicly released
at: https://github.com/scify/JedAIToolkit. Any development kit
and/or IDE for Java 8 or higher can be used for compiling it, but
this is not necessary. JedAI’s Docker image contains an executable
jar file with the entire source code and its dependencies. When
executed, it deploys JedAI’s Web application, allowing users to
reproduce all experiments by following the instructions below,
in Section 2.6.
9

2.6. Running the experiments

Table 7 provides detailed guidelines for reproducing all exper-
iments. In essence, the user merely needs to navigate through the
windows of JedAI’s user interface, which are illustrated in Fig. 2.
This means that minimal human intervention is required. For
example, all datasets in Tables 1–3 are already included in JedAI’s
Docker image; the one selected in Step 8 is automatically loaded
after the Data Reading step, which follows Step 9 in all pipelines.
Similarly, there is a separate window with all available methods
for each pipeline step, but no particular action is required from
the user: the method used in the chosen experiment is already
marked as selected and its parameters are appropriately con-
figured. The user simply needs to press ‘Next’ in each step to
proceed with the next one.

It is worth stressing at this point the wealth of informa-
tion that is provided by the final window, called ‘Workflow
Execution’, after completing an experiment:

1. The button ‘Explore’ presents the entity profiles that form
each equivalence cluster.

https://github.com/scify/JedAIToolkit

G. Mandilaras, G. Papadakis, L. Gagliardelli et al. Information Systems 102 (2021) 101830

D
0
s
p
e
t
f
r
U
T

t
s
o
m
t
o
r
r
p
u
h
s

3

3

r
w

f
i
b
t

w
‘
t
a
t
s

u
f
t

2. The tab ‘Details’ contains the output of each step in the
latest pipeline so as understand its operation and contribu-
tion to the overall performance.

3. The tab ‘Workbench’ summarizes the performance of all
pipelines executed so far, as shown in Fig. 2(h). This allows
for juxtaposing the performance of different pipelines over
the same dataset, even at the level of individual steps:
pressing the button ≡ in the leftmost column displays a
performance breakdown among all steps.

The outcomes of the Performance, the Scalability and the
Budget-awareness tests over all testing platforms are reported in
Tables 8–10, respectively. In all cases, the effectiveness measures
are common among all platforms, with the only differences cor-
responding to the running times. Compared to the experiments
reported in [12], the effectiveness results of Budget-awareness
tests are practically identical in most cases. The only significant
exceptions pertain to the best schema-agnostic pipeline over Dc2,
c3 and Dcddb, whose F-Measure has now changed from 0.900,
.607 and 0.872 to 0.898, 0.609 and 0.877, respectively, after
ome bug fixes. The F-Measure of the default schema-agnostic
ipeline over Dc3 has also increased from 0.586 to 0.594. The
ffectiveness results of the Scalability and the Budget-awareness
ests are also identical with those reported in [12]; only their
ormat has changed from diagrams to tables. In all cases, the
unning times in [12] are reproduced here, corresponding to
buntu − base1 in Tables 8 and 9 and to Ubuntu − base1′ in
able 10.
Finally, it is worth stressing that there is a delay when pressing

he ‘Next’ button in the window ‘Entity Matching’ of the
chema-agnostic pipelines. For small datasets, the delay is hardly
bservable, but it increases for larger datasets, raising up to few
inutes for D1M , D2M and Dc8. This delay is caused by a process

hat converts all entity profiles into the representation model
f the selected Entity Matching method. This is included in the
unning times of Ubuntu − base1, where all experiments were
un through script files, but is not considered by any other testing
latform, where all experiments were executed through JedAI’s
ser interface. This is one of the reasons for the significantly
igher running times of Ubuntu − base1 even in comparison to
imilar testing platforms, like Ubuntu − base2.

. Reconfiguring and extending our experiments

.1. Evaluating different experimental setups

To test the robustness of our experimental study, the configu-
ation of a particular experiment can be adjusted in two different
ays as follows:

1. by enriching or modifying the methods of at least one
pipeline step, and/or

2. by altering the value of at least one parameter in one of the
selected methods.

This is possible by repeating the procedure in Table 7 up to the
irst window of Step 10, namely ‘Data Reading’. Subsequently,
n the separate window of each step, the pre-selected options can
e modified as described below, in Sections 3.1.1–3.1.3, for each
ype of experiments.

Note that every method in every pipeline step is associated
ith three configuration approaches: ‘Default’, ‘Automatic’,

Manual’. The ‘Default’ configuration is already widely used in
he experimental analysis of [12]. The ‘Automatic’ configuration
pplies grid or random search over numerous iterations so as
o identify the settings that maximize F-Measure. The random
earch involves 100 iterations, while the grid search might yield
10
Fig. 3. (a) The screen showing the configuration for a particular pipeline step.
(b) The tooltip that explains the role of a particular parameter during the manual
configuration of a method.

an exponential number of iterations in case multiple parameters
are simultaneously fine-tuned. As both options might lead to long
running times, the preferred approach is the ‘Manual’ config-
uration. After selecting it, JedAI presents all parameters of the
current pipeline along with their default values, as in Fig. 3(a).
The user can alter these values at will and store them by pressing
‘Next’ to proceed to the next window.

Note also that every method in JedAI implements the IDoc-
mentation interface, which conveys all necessary information
or its manual configuration. When configuring a specific parame-
er, the information image i is shown. When leaving the mouse
cursor over it, a tooltip appears that describes the role of this
parameter. An example is shown in Fig. 3(b).

Below, we explain the restrictions that apply to each pipeline
step with respect to the methods that can be selected.

3.1.1. Schema-agnostic end-to-end pipeline
As explained above, this pipeline involves six steps:

1. Schema Clustering. At most one method can be selected,
but this step is not used in the considered experiments.

2. Block Building. One or more of the nine available methods
can be selected. All experiments exclusively employ Token
Blocking, which is a parameter-free approach.

3. Block Cleaning. Any combination of the three available
methods is possible. All experiments apply Comparison-
based Block Purging and Block Filtering with their default
parameter values.

4. Comparison Cleaning. At most one of the nine available
methods can be selected. In our experiments, we exclu-
sively use Cardinality Node Pruning (CNP) with its de-
fault configuration. All methods are configured simply by
selecting one of the six weighting schemes.

5. Entity Matching. One of the two available methods can be
applied. All experiments employ the Profile Matcher. Both
methods are configured by selecting a similarity measure
and a compatible representation model, which transforms
the set of textual attribute values in each entity profile
into a suitable format. These two parameters give rise to
numerous configurations.

G. Mandilaras, G. Papadakis, L. Gagliardelli et al. Information Systems 102 (2021) 101830
6. Entity Clustering. At most one method can be selected in
this step. There are three methods available for Clean-
Clean ER, but all experiments employ the Unique Mapping
Clustering approach. For Dirty ER, there are seven meth-
ods for Dirty ER, but all experiments use the Connected
Components Clustering. All methods are configured by set-
ting their similarity threshold, below which all pairwise
comparisons are discarded.

3.1.2. Schema-based end-to-end pipeline
This pipeline consists of two steps:

1. The Similarity Join step offers five similarity join algo-
rithms. Among them, PPJoin is used in all experiments. All
methods are configured by setting their similarity thresh-
old along with the attribute(s), to which they are applied.

2. The Entity Clustering step is the same as the schema-
agnostic pipeline. In most cases, it uses the same similarity
threshold as the previous step.

3.1.3. Budget-aware schema-agnostic pipeline
This pipeline differs from its budget-agnostic counterpart (see

Section 3.1.1) only in the Prioritization step that intervenes be-
tween Comparison Cleaning and Entity Matching. There are dif-
ferent options for this step, depending on the preceding pipeline
steps: if no Block Building method is employed, two methods are
available, otherwise one of five different methods can be used.
The latter approach was used in all Budget-awareness tests. In
both cases, at most one approach can be selected and it is config-
ured by setting its budget (i.e., number of executed comparisons)
and the weighting scheme that lies at its core.

Note that for all tests, the next configuration experiment is
performed by pressing the ‘Start Over’ button at the bottom
right corner of Fig. 2(f) to return to the Data Reading step of the
current experiment.

3.2. Extending our experiments

Our experimental study can be extended in two ways. First,
by adding new datasets through the ‘Data Reading’ step. The
window of this step allows users to select any dataset in any of
the supported formats (CSV, relational DB, XML or RDF) that is
stored either locally or is available through a server with a public
URL. Note that each dataset should be accompanied by the golden
standard comprising all duplicates.

Second, it is possible to extent our experimental analysis with
new methods in any of the considered pipeline steps by lever-
aging JedAI’s extensible architecture. The only requirement is
that every new method is available through a Java class that
implements the interface of the corresponding pipeline step -
as explained in [12], every step is associated with a simple Java
interface that determines its input and output. In this way, new
methods can be seamlessly integrated into JedAI’s code and
be treated like the already available methods. Ideally, the new
methods should also implement the IDocumentation inter-
face, which exposes the following functions that return textual
descriptions about the core characteristics of an algorithm:

• getMethodName() returns the name of the method.
• getParameterName(int parameterId) returns the

name of a particular configuration parameter.
• getParameterDescription(int parameterId) returns

a short description for a particular configuration parameter.
• getMethodParameters() returns a description for all con-

figuration parameters of the method, using the above func-

tions.

11
• getMethodInfo() returns a short description of the
method’s internal functionality.

• getMethodConfiguration() returns the parameter con-
figuration of the current instance of a method. It is called by
logger.

• getParameterConfiguration() returns a JsonArray
object with a JsonObject for every configuration param-
eter that comprises the following information: the class of
the parameter (e.g., java.lang. Integer), its name, de-
termined by the function getParameterName, its default,
minimum and maximum values along with the step one,
and its description, determined by the function getParam-
eterDescription. This information is used for the manual
configuration through JedAI’s interface.

This documentation, which is also leveraged by JedAI’s user
interface, ensures that new methods can be easily employed by
users other than their creators. For more details on extending
JedAI please refer to [12].

4. Conclusions

We have presented an analytical user guide for JedAI’s Web
application, which is available through a Docker image. Our in-
structions allow a user with limited or no familiarity with Entity
Resolution to repeat all single-core experiments in [12] so as
to evaluate the relative performance of the main end-to-end
pipelines. Our instructions also facilitate the reconfiguration of
these experiments, by constructing and evaluating pipelines of
arbitrary complexity.

All these experiments involve learning-free methods. In the
future, we plan to extend JedAI with learning-based methods,
paying particular attention to the integration of Deep Learning
technologies.

5. Revision comments

This reproducibility manuscript is a valuable complement to
the parent paper [12], where the last release of JedAI software
was presented. JedAI includes a web-based user interface and
a complete library of techniques needed to create end-to-end
Entity Resolution (ER) pipelines. The authors compared different
ER techniques by considering three different dimensions that
included: (a) Schema-awareness, (b) Budget-awareness, and (c)
Execution mode. The wide set of experiments provided included
the evaluation of 17 datasets and considered the performance,
scalability, and budget awareness of the ER pipelines. This paper
provides the actual configuration used for those ER pipelines, and
gives some ideas regarding how they can be personalized. Fur-
thermore, some guidelines showing how JedAI can be extended
are also devised.

Apart from creating a permanent repository in Mendeley with
the necessary software and datasets, the authors provide a
Docker-based system to reproduce those experiments. Using the
web-based interface of JedAI, any researcher can easily use the
default configuration parameters provided for each experiment,
execute it, and finally see the results of that execution. Besides,
JedAI also allows to configure and personalize those default
parameters, as well as the addition of new methods for the
comparison with existing methods, adding extra value to the
current work.

While reviewing this manuscript, a few issues around repro-
ducibility were brought into the discussion, which show how
difficult it can be to provide a complete reproducible framework.
We dealt with some experiments where the provided default pa-
rameters were wrong, which led to unexpected results. Another

minor issue was related to yielding slightly different values than

G. Mandilaras, G. Papadakis, L. Gagliardelli et al. Information Systems 102 (2021) 101830

t
i
c
i
t
t
m
a
p
g
p
t
J
e
t
p
f

e
m
r
g
p

D

r
t
(
(
P
V
S

A

E

R

hose reported in the parent paper or figures showing the results
n a rather different shape. We also found some mismatches
oncerning the memory requirements needed to run some exper-
ments, which would not end or report higher execution times
han expected. All those issues were successfully fixed during
he revision process. The authors satisfactorily took all our com-
ents into account and improved their software library and web
pplication. Finally, the JedAI reproduction framework does not
rovide a mechanism to automatically run all the experiments,
ather all the results, and create the same tables and figures of the
arent paper, which would be extremely interesting to reproduce
he original work easily. However, the workflow included in
edAI still allows any researcher to effortlessly reproduce each
xperiment. The process consists of choosing the experiment
o perform, going through the screens that display the default
arameters, starting the execution, waiting for it to complete, and
inally gathering the results.

We would like to thank the authors for their considerable
ffort to provide a valuable software library to the research com-
unity. This library allows new researchers to understand and

eproduce state-of-the-art experiments with minimal effort and
uarantees long-term software support, following a sequence of
recise and straightforward instructions.

eclaration of competing interest

The authors declare the following financial interests/personal
elationships which may be considered as potential competing in-
erests: (1) Dr. Dimitrios Skoutas, Athena Research Center, Greece
2) Prof. Ekaterini Ioannou, Tilburg University, The Netherlands
3) Prof. Dr. Erhard Rahm, University of Leipzig, Germany (4)
rof. Nikolaus Augsten, University of Salzburg, Austria (5) Prof.
assilis Christophides, University of Crete, Greece (6) Prof. Kostas
tefanidis, University of Tampere, Finland

cknowledgment

This work was partially funded by the EU H2020 project
xtremeEarth (Grant No. 825258).

eferences

[1] G. Papadakis, E. Ioannou, E. Thanos, T. Palpanas, The Four Generations
of Entity Resolution, in: Synth. Lect. Data Manage., Morgan & Claypool
Publishers, 2021.

[2] P. Christen, Data Matching - Concepts and Techniques for Record Linkage,
Entity Resolution, and Duplicate Detection, in: Data-Centric Systems and
Applications, Springer, 2012.

[3] X.L. Dong, D. Srivastava, Big Data Integration, in: Synthesis Lectures on
Data Management, Morgan & Claypool Publishers, 2015.

[4] V. Christophides, V. Efthymiou, K. Stefanidis, Entity Resolution in the
Web of Data, in: Synthesis Lectures on the Semantic Web: Theory and
Technology, Morgan & Claypool Publishers, 2015.
12
[5] A.K. Elmagarmid, P.G. Ipeirotis, V.S. Verykios, Duplicate record detection:
A survey, IEEE Trans. Knowl. Data Eng. 19 (1) (2007) 1–16.

[6] G. Papadakis, D. Skoutas, E. Thanos, T. Palpanas, Blocking and filtering
techniques for entity resolution: A survey, ACM Comput. Surv. 53 (2)
(2020) 31:1–31:42.

[7] V. Christophides, V. Efthymiou, T. Palpanas, G. Papadakis, K. Stefanidis, An
overview of end-to-end entity resolution for big data, ACM Comput. Surv.
53 (6) (2020).

[8] L. Getoor, A. Machanavajjhala, Entity resolution: Theory, practice & open
challenges, Proc. VLDB Endow. 5 (12) (2012) 2018–2019.

[9] K. Stefanidis, V. Efthymiou, M. Herschel, V. Christophides, Entity resolution
in the web of data, in: The Web Conference (WWW), 2014, pp. 203–204.

[10] G. Papadakis, T. Palpanas, Web-scale, schema-agnostic, end-to-end entity
resolution, in: The Web Conference (WWW), Lyon, France, 2018.

[11] G. Papadakis, E. Ioannou, T. Palpanas, Entity resolution: Past, present and
yet-to-come, in: EDBT, 2020, pp. 647–650.

[12] G. Papadakis, G. Mandilaras, L. Gagliardelli, G. Simonini, E. Thanos, G. Gian-
nakopoulos, S. Bergamaschi, T. Palpanas, M. Koubarakis, Three-dimensional
entity resolution with JedAI, Inf. Syst. 93 (2020) 101565.

[13] G. Papadakis, Entity resolution benchmark dataset, 2020, https://data.
mendeley.com/datasets/4whpm32y47.

[14] J. Euzenat, A. Ferrara, C. Meilicke, J. Pane, F. Scharffe, P. Shvaiko, H.
Stuckenschmidt, O. Sváb-Zamazal, V. Svátek, C.T. dos Santos, Results of
the Ontology Alignment Evaluation Initiative 2010, in: Proceedings of the
5th International Workshop on Ontology Matching (OM-2010), 2010.

[15] Ontology alignment evaluation initiative, 2010, http://oaei.
ontologymatching.org/2010.

[16] H. Köpcke, A. Thor, E. Rahm, Evaluation of entity resolution approaches on
real-world match problems, Proc. VLDB Endow. 3 (1) (2010) 484–493.

[17] Benchmark datasets for entity resolution, 2010, https://dbs.uni-
leipzig.de/research/projects/object_matching/benchmark_datasets_for_
entity_resolution.

[18] C. Gokhale, S. Das, A. Doan, J.F. Naughton, N. Rampalli, J.W. Shavlik, X. Zhu,
Corleone: hands-off crowdsourcing for entity matching, in: SIGMOD, 2014,
pp. 601–612.

[19] S. Das, A. Doan, G.C.P. Suganthan, C. Gokhale, P. Konda, Y. Govind,
D. Paulsen, The Magellan Data Repository, https://sites.google.com/site/
anhaidgroup/projects/data.

[20] G. Papadakis, E. Ioannou, C. Niederée, P. Fankhauser, Efficient entity
resolution for large heterogeneous information spaces, in: WSDM, 2011,
pp. 535–544.

[21] G. Papadakis, Blocking Framework, https://sourceforge.net/projects/
erframework/.

[22] A. McCallum, K. Nigam, L.H. Ungar, Efficient clustering of high-dimensional
data sets with application to reference matching, in: KDD, 2000, pp.
169–178.

[23] Repeatability Datasets, https://hpi.de/naumann/projects/repeatability/
datasets.html.

[24] U. Draisbach, F. Naumann, A comparison and generalization of blocking
and windowing algorithms for duplicate detection, in: Proceedings of the
International Workshop on Quality in Databases (QDB), 2009, pp. 51–56.

[25] B. Kenig, A. Gal, Mfiblocks: An effective blocking algorithm for entity
resolution, Inf. Syst. 38 (6) (2013) 908–926.

[26] P. Konda, S. Das, G.C. Paul Suganthan, A. Doan, A. Ardalan, J.R. Ballard,
H. Li, F. Panahi, H. Zhang, J.F. Naughton, S. Prasad, G. Krishnan, R. Deep,
V. Raghavendra, Magellan: Toward building entity matching management
systems, Proc. VLDB Endow. 9 (12) (2016) 1197–1208.

[27] S. Mudgal, H. Li, T. Rekatsinas, A. Doan, Y. Park, G. Krishnan, R. Deep, E.
Arcaute, V. Raghavendra, Deep learning for entity matching: A design space
exploration, in: SIGMOD, 2018, pp. 19–34.

http://refhub.elsevier.com/S0306-4379(21)00068-5/sb1
http://refhub.elsevier.com/S0306-4379(21)00068-5/sb1
http://refhub.elsevier.com/S0306-4379(21)00068-5/sb1
http://refhub.elsevier.com/S0306-4379(21)00068-5/sb1
http://refhub.elsevier.com/S0306-4379(21)00068-5/sb1
http://refhub.elsevier.com/S0306-4379(21)00068-5/sb2
http://refhub.elsevier.com/S0306-4379(21)00068-5/sb2
http://refhub.elsevier.com/S0306-4379(21)00068-5/sb2
http://refhub.elsevier.com/S0306-4379(21)00068-5/sb2
http://refhub.elsevier.com/S0306-4379(21)00068-5/sb2
http://refhub.elsevier.com/S0306-4379(21)00068-5/sb3
http://refhub.elsevier.com/S0306-4379(21)00068-5/sb3
http://refhub.elsevier.com/S0306-4379(21)00068-5/sb3
http://refhub.elsevier.com/S0306-4379(21)00068-5/sb4
http://refhub.elsevier.com/S0306-4379(21)00068-5/sb4
http://refhub.elsevier.com/S0306-4379(21)00068-5/sb4
http://refhub.elsevier.com/S0306-4379(21)00068-5/sb4
http://refhub.elsevier.com/S0306-4379(21)00068-5/sb4
http://refhub.elsevier.com/S0306-4379(21)00068-5/sb5
http://refhub.elsevier.com/S0306-4379(21)00068-5/sb5
http://refhub.elsevier.com/S0306-4379(21)00068-5/sb5
http://refhub.elsevier.com/S0306-4379(21)00068-5/sb6
http://refhub.elsevier.com/S0306-4379(21)00068-5/sb6
http://refhub.elsevier.com/S0306-4379(21)00068-5/sb6
http://refhub.elsevier.com/S0306-4379(21)00068-5/sb6
http://refhub.elsevier.com/S0306-4379(21)00068-5/sb6
http://refhub.elsevier.com/S0306-4379(21)00068-5/sb7
http://refhub.elsevier.com/S0306-4379(21)00068-5/sb7
http://refhub.elsevier.com/S0306-4379(21)00068-5/sb7
http://refhub.elsevier.com/S0306-4379(21)00068-5/sb7
http://refhub.elsevier.com/S0306-4379(21)00068-5/sb7
http://refhub.elsevier.com/S0306-4379(21)00068-5/sb8
http://refhub.elsevier.com/S0306-4379(21)00068-5/sb8
http://refhub.elsevier.com/S0306-4379(21)00068-5/sb8
http://refhub.elsevier.com/S0306-4379(21)00068-5/sb9
http://refhub.elsevier.com/S0306-4379(21)00068-5/sb9
http://refhub.elsevier.com/S0306-4379(21)00068-5/sb9
http://refhub.elsevier.com/S0306-4379(21)00068-5/sb11
http://refhub.elsevier.com/S0306-4379(21)00068-5/sb11
http://refhub.elsevier.com/S0306-4379(21)00068-5/sb11
http://refhub.elsevier.com/S0306-4379(21)00068-5/sb12
http://refhub.elsevier.com/S0306-4379(21)00068-5/sb12
http://refhub.elsevier.com/S0306-4379(21)00068-5/sb12
http://refhub.elsevier.com/S0306-4379(21)00068-5/sb12
http://refhub.elsevier.com/S0306-4379(21)00068-5/sb12
https://data.mendeley.com/datasets/4whpm32y47
https://data.mendeley.com/datasets/4whpm32y47
https://data.mendeley.com/datasets/4whpm32y47
http://oaei.ontologymatching.org/2010
http://oaei.ontologymatching.org/2010
http://oaei.ontologymatching.org/2010
http://refhub.elsevier.com/S0306-4379(21)00068-5/sb16
http://refhub.elsevier.com/S0306-4379(21)00068-5/sb16
http://refhub.elsevier.com/S0306-4379(21)00068-5/sb16
https://dbs.uni-leipzig.de/research/projects/object_matching/benchmark_datasets_for_entity_resolution
https://dbs.uni-leipzig.de/research/projects/object_matching/benchmark_datasets_for_entity_resolution
https://dbs.uni-leipzig.de/research/projects/object_matching/benchmark_datasets_for_entity_resolution
https://dbs.uni-leipzig.de/research/projects/object_matching/benchmark_datasets_for_entity_resolution
https://dbs.uni-leipzig.de/research/projects/object_matching/benchmark_datasets_for_entity_resolution
http://refhub.elsevier.com/S0306-4379(21)00068-5/sb18
http://refhub.elsevier.com/S0306-4379(21)00068-5/sb18
http://refhub.elsevier.com/S0306-4379(21)00068-5/sb18
http://refhub.elsevier.com/S0306-4379(21)00068-5/sb18
http://refhub.elsevier.com/S0306-4379(21)00068-5/sb18
https://sites.google.com/site/anhaidgroup/projects/data
https://sites.google.com/site/anhaidgroup/projects/data
https://sites.google.com/site/anhaidgroup/projects/data
http://refhub.elsevier.com/S0306-4379(21)00068-5/sb20
http://refhub.elsevier.com/S0306-4379(21)00068-5/sb20
http://refhub.elsevier.com/S0306-4379(21)00068-5/sb20
http://refhub.elsevier.com/S0306-4379(21)00068-5/sb20
http://refhub.elsevier.com/S0306-4379(21)00068-5/sb20
https://sourceforge.net/projects/erframework/
https://sourceforge.net/projects/erframework/
https://sourceforge.net/projects/erframework/
http://refhub.elsevier.com/S0306-4379(21)00068-5/sb22
http://refhub.elsevier.com/S0306-4379(21)00068-5/sb22
http://refhub.elsevier.com/S0306-4379(21)00068-5/sb22
http://refhub.elsevier.com/S0306-4379(21)00068-5/sb22
http://refhub.elsevier.com/S0306-4379(21)00068-5/sb22
https://hpi.de/naumann/projects/repeatability/datasets.html
https://hpi.de/naumann/projects/repeatability/datasets.html
https://hpi.de/naumann/projects/repeatability/datasets.html
http://refhub.elsevier.com/S0306-4379(21)00068-5/sb25
http://refhub.elsevier.com/S0306-4379(21)00068-5/sb25
http://refhub.elsevier.com/S0306-4379(21)00068-5/sb25
http://refhub.elsevier.com/S0306-4379(21)00068-5/sb26
http://refhub.elsevier.com/S0306-4379(21)00068-5/sb26
http://refhub.elsevier.com/S0306-4379(21)00068-5/sb26
http://refhub.elsevier.com/S0306-4379(21)00068-5/sb26
http://refhub.elsevier.com/S0306-4379(21)00068-5/sb26
http://refhub.elsevier.com/S0306-4379(21)00068-5/sb26
http://refhub.elsevier.com/S0306-4379(21)00068-5/sb26
http://refhub.elsevier.com/S0306-4379(21)00068-5/sb27
http://refhub.elsevier.com/S0306-4379(21)00068-5/sb27
http://refhub.elsevier.com/S0306-4379(21)00068-5/sb27
http://refhub.elsevier.com/S0306-4379(21)00068-5/sb27
http://refhub.elsevier.com/S0306-4379(21)00068-5/sb27

	Reproducible experiments on Three-Dimensional Entity Resolution with JedAI
	Introduction
	The reproducible experiments on Entity Resolution
	Preliminaries
	Sets of experiments
	Experimental setup in our primary paper
	System requirements and performance evaluation
	Obtaining and compiling our source code
	Running the experiments

	Reconfiguring and extending our experiments
	Evaluating different experimental setups
	Schema-agnostic end-to-end pipeline
	Schema-based end-to-end pipeline
	Budget-aware schema-agnostic pipeline

	Extending our experiments

	Conclusions
	Revision comments
	Declaration of competing interest
	Acknowledgment
	References

