
Dagger: A Data (not code) Debugger

El Kindi Rezig? Lei Cao? Giovanni Simonini? Maxime Schoemans�
Samuel Madden? Mourad Ouzzani† Nan Tang† Michael Stonebraker?

?MIT CSAIL �Université Libre de Bruxelles †Qatar Computing Research Institute
{elkindi, lcao, giovanni, madden, stonebraker}@csail.mit.edu

maxime.schoemans@ulb.ac.be {mouzzani, ntang}@hbku.edu.qa

ABSTRACT
With the democratization of data science libraries and frame-
works, most data scientists manage and generate their data
analytics pipelines using a collection of scripts (e.g., Python,
R). This marks a shift from traditional applications that
communicate back and forth with a DBMS that stores and
manages the application data. While code debuggers have
reached impressive maturity over the past decades, they fall
short in assisting users to explore data-driven what-if sce-
narios (e.g., split the training set into two and build two
ML models). Those scenarios, while doable programmati-
cally, are a substantial burden for users to manage them-
selves. Dagger (Data Debugger) is an end-to-end data de-
bugger that abstracts key data-centric primitives to enable
users to quickly identify and mitigate data-related problems
in a given pipeline. Dagger was motivated by a series of
interviews we conducted with data scientists across several
organizations. A preliminary version of Dagger has been in-
corporated into Data Civilizer 2.0 to help physicians at the
Massachusetts General Hospital process complex pipelines.

1. INTRODUCTION
As we are moving towards data-centric systems, build-

ing and debugging data pipelines has become more crucial
than ever. Choosing and tuning those pipelines is a dif-
ficult problem. As they increase in complexity, a number
of things can go wrong during pipeline modeling or execu-
tion: (1) code bugs: there may be bugs in one or more of
the pipeline’s modules. This requires tracking down poten-
tial bugs (e.g., using a code debugger) and then fixing the
code; (2) wrong parameters: it is often the case that one
or more components require substantial parameter tuning,
e.g., in ML models [16]. In this case, the user (or an algo-
rithm) evaluates the pipeline using a set of parameters to
get better results (e.g., the accuracy of the ML model); and
(3) data errors: the input data or any of the intermediate
data produced by the code has a problem, e.g., training data
is not large enough for a machine learning model to make

This article is published under a Creative Commons Attribution License
(http://creativecommons.org/licenses/by/3.0/), which permits distribution
and reproduction in any medium as well allowing derivative works, pro-
vided that you attribute the original work to the author(s) and CIDR 2020.
CIDR ’20 January 12–15, 2020, Amsterdam, Netherlands

reasonable inferences or the data is in the wrong format (e.g.,
bad schema alignment or the data is wrong). In Dagger, we
focus on addressing problems related to data errors. In do-
ing so, users may be able to also identify errors related to
code bugs or non-ideal parameters, but they would discover
those issues by investigating the data that is handled in their
code. In a given data pipeline, data goes through a myriad
of transformations across different components. Even if the
input data is valid, its intermediate versions may not be.
We refer to volatile data that is handled in the code (e.g.,
scalar variable, arrays) as code-handled data.

We conducted a series of interviews with data scientists
and engineers at the Massachusetts General Hospital (MGH),
Tamr, Paradigm4 and Recorded Future to gauge interest
in developing a tool that assists users in debugging code-
handled data, and found widespread demand for such a data
debugger.

To address this need, we introduce Dagger, an end-to-end
framework that treats code-handled data as a first-class cit-
izen. By putting code-handled data at the forefront, Dagger
allows users to (1) create data pipelines from input Python
scripts; (2) interact with the pipeline-handled data to spot
data errors; (3) identify and debug data-related problems
at any stage of the pipeline by using a series of primitives
we developed based on real-world data debugging use-cases
(Section 2).

Motivated by use-cases we encountered while collaborat-
ing with MGH, Dagger is a work-in-progress project, and we
have already incorporated its preliminary version into Data
Civilizer 2.0 (DC2 ) [14]. In this paper, we sketch the design
of the extended version of Dagger.

1.1 Dagger overview
Figure 1(a) illustrates the architecture of Dagger. In a

nutshell, the user interacts with Dagger through a declara-
tive SQL-like language to query, inspect, and debug the data
that is input to and produced by their code.
Workflow manager: In order to integrate user pipelines
into off-the-shelf workflow management systems [2, 18, 14],
users are often required to write additional code. Dagger
allows users to leave their code in its native environment
(e.g., Python) and only requires users to track the data.
Dagger offers two modes of workflow debugging: (1) intra-
module debugging where users tag different codes blocks
that will become the pipeline nodes; and (2) inter-module
debugging where users track the data at the boundary of
the modules, i.e., the input and output data of the pipeline
blocks/modules. For the intra-module debugging, we chose
Python as the target programming environment because it



(noisy)
labels

Classification
results

Label candidates
Active Learning

Montage

Filter

Balance

Inference

Training

labelling Label propagation

Label 
generation

Preprocessing

Data
Cleaned data

Modeling

In-memory data structures (e.g., Pandas DataFrames)

Code

Logging manager

DB

code symbols

code-handled data

delta logging

Interaction language

Query interpreter

Query processor

Debugging primitives

data breakpoints

split

data generalization

workflow manager code tagging

code static analysis

compare

(a) (b)
Figure 1: (a) Dagger Architecture; (b) Workflow used in EEG Application

is the most popular language among data scientists [1]. We
refer to pipeline nodes as blocks in the rest of the paper.
For instance, users can create the pipeline in Figure 1(b)
that includes scripts scattered in different Python files by
running the following Dagger statements (we will explain
the pipeline in Section 2):

CREATE BLOCK b1 FOR PIPELINE P1: preprocessing.py:1-600
CREATE BLOCK b2 FOR PIPELINE P1: label_generation.py:10-1440
CREATE BLOCK b3 FOR PIPELINE P1: modeling.py:200-5000
CREATE BLOCK b4 FOR PIPELINE P1: active_learning.py:40-3000

Every statement of the above snippet creates a pipeline
block that is attached to a code section of interest. After the
blocks are tagged, Dagger performs a static analysis of the
code to extract the dataflow. This requires generating a call
graph (i.e., how the different code blocks are interlinked).
This step will create the edges in a Dagger pipeline.
Logging manager: once the pipeline blocks are defined,
the logging manager stores, for a given data value, its ini-
tial value and its updated versions across pipeline blocks
at runtime. The logger can track the value of any data
structure (e.g., Pandas DataFrames, variables, etc.). For
well-known data types such as Pandas DataFrames [12] and
Python built-in types, the logging manager logs their values
automatically. However, for user-defined objects, a logging
function has to be provided to extract the value of the ob-
jects. The logging manager stores the tracked code-handled
data and metadata (e.g., variable names) into a relational
database.
Interaction language (DQL): Because Dagger exposes
code-handled data to users, it features a simple-to-use SQL-
like language, DQL (Dagger Query Language), to facilitate
access and interaction with the pipeline data (e.g., look up
all the occurrences of a given data value in the pipeline).
Users post their DQL debugging queries through a command-
line interface.
Debugging primitives: Dagger supports key debug-
ging primitives: (1) data breakpoints to write data assertions
(e.g., is the salary of an employee ever set to a negative
value?) that are checked across the pipeline blocks; (2) split
to partition input tables and run a user-specified function

on all of them. For instance, we could partition the training
dataset on a value of an attribute and build classifiers using
each partition as the training data. In this case, the user-
defined function is the classifier. (3) data generalization to
find, given example data values in a table, a partition based
on a user-provided similarity function (e.g., Euclidean dis-
tance) (4) compare to compare different pipelines using their
code-handled data, i.e., if two pipelines generate similar in-
termediate data, then, it is likely their downstream blocks
would produce similar results.

1.2 Use Cases
Dagger is being used in our ongoing collaborations with

two separate groups at the Massachusetts General Hospital
(MGH). We will provide examples based on those two use
cases throughout the paper.
Use case 1: Our first use case is an ML pipeline for classify-
ing seizures in electroencephalogram (EEG) data from med-
ical patients at MGH. By employing data cleaning and regu-
larization techniques in Dagger, we have been able to achieve
better accuracy for the ML models used in the EEG appli-
cation. The better performing data pipelines were devised
by iteratively building pipelines and trying various cleaning
routines to preprocess the data.
Use case 2: We have recently started a collaboration with
another MGH group that focuses on tracking infections in-
side the hospital. For instance, a patient might spread an in-
fection to a nurse, who then, spreads it to other patients. In
this use case, structured data about patients has been used
to visualize the spread of infections across the hospital floor
plans using Kyrix [15]. This data has several errors due to
manual editing (e.g., misspelling, wrong date/time record-
ing) or bad database design, e.g., a newborn inherits the
same identifier as the mother which results in two patients
having the same identifier. Furthermore, some information
has to be inferred using scripts, e.g., the date and time of
the patient’s check-out from a room (some records only have
the check-in date and time). We used Dagger to help build
pipelines to prepare this data, and to efficiently help detect
data errors in the intermediate steps of the pipeline (more
details in Section 4).



2. MOTIVATING EXAMPLE
We introduce the key primitives of Dagger through mo-

tivating scenarios we have experienced in Use Case 1. We
first introduce some background on the EEG application,
and then proceed with data debugging primitives we found
most useful to build a classifier that predicts seizures from
EEG data.

2.1 Setup
In our collaboration with MGH, we built an end-to-end

large scale ML system that automatically captures and clas-
sifies seizures by analyzing the data produced during the
EEG monitoring of the patients in the intensive care unit
(ICU) [5]. This system is designed to detect the possibil-
ity of neural injury by capturing seizures as early as possi-
ble. The classifier predicts six classes, which correspond to
different EEG patterns that characterize different types of
seizures [8] A deep neural network was used to build a clas-
sifier from the training EEG data (for details, refer to [5]).
To meet the classification accuracy requirement of clinical
practice, we built a pipeline that includes data preprocess-
ing, labeling, and classification, as shown in Figure 1(b).
This enables the neurologists to iteratively and interactively
label and clean the data driven by the output of the clas-
sification model, progressively improving the classification
accuracy.

Figure 1(b) illustrates the final pipeline that we built for
the prediction of seizure likelihood. In a nutshell, there are
three phases in the pipeline: (1) Preprocessing: this phase
includes the Balance, Montage and Filter modules, which
are EEG-specific preprocessing operators. (2) Label propa-
gation: an EEG segment encodes several features that are
extracted and then clustered with similar segments using
Euclidean distance. This clustering step allows us to propa-
gate labels from human-labeled segments to other segments
in the same clusters. This allows us to generate more train-
ing data for the neural network that is used to classify EEG
segments; and (3) Modeling: finally, we train a neural net-
work using both the manually-labeled as well as the propa-
gated EEG segments and infer various seizure-related classes
in the inference step.
How Dagger fits in: Data debugging is particularly im-
portant in this iterative learning process, since the accuracy
of the classification model relies on the availability of a large
amount of high quality labels and clean training data. For
example, since the experienced neurologists are a scarce re-
source and their time is precious, it is not practical to rely
on them to manually label the big EEG dataset collected
by MGH (30TB, 450 million EEG segments). Dagger facil-
itates all of the steps in Figure 1(b) to help them improve
the accuracy of the classifier. In this case, Dagger proved
particularly helpful in preprocessing the data, i.e., we iden-
tified anomalies such as outliers and all-zero EEG segments
in the data flowing across the pipeline blocks.

2.2 Putting Dagger Primitives in Context
We present a walk-through of how the debugging primi-

tives of Dagger helped us build a high-accuracy ML model
to predict seizures. We will present the examples using a
language that we use in Dagger (DQL) to specify debug-
ging primitives and interact with the code-handled data. We
present the DQL specifications informally and explain them
in the remainder of the paper. Due to space constraints, we

omit the full syntax of DQL statements and their variations
in this paper.
Data Generalization: Dagger provides a Data General-
ization primitive to automatically and reliably produce la-
bels. More specifically, given a few EEG segments manually
labeled by the neurologists, the data generalization primitive
quickly finds and propagates labels to the objects similar to
these labeled examples.

Example 2.1. Given the following statements, Dagger uses
the Euclidean distance on features derived from EEG seg-
ments to find segments that are most similar to segments
E1, E2 and E3 in table table eegs. The output of the follow-
ing statement is a set of clusters of EEG segments within a
0.8 Euclidean distance to E1, E2 and E3.

GENERALIZE E1, E2, E3 FROM table_eegs
USING EUCLIDEAN THRESHOLD 0.8

Split: In order to effectively use the neurologists’ time, we
have to make sure that they only label the critical examples.
In particular, we ask them to focus on examples from the
classes that are most likely to be misclassified, because fix-
ing errors in these classes likely reduces classification errors.
Therefore, Dagger features a split primitive that partitions
the training dataset based on different predicates (e.g., class
labels) so that users can analyze different models produced
with different partitions.

Example 2.2. The split primitive is important in the data
preprocessing step (Figure 1(b)). For example, Montage is
a technique widely used in EEG data preprocessing [13],
which involves creating additional training data by slicing,
reversing, and replicating segments of EEG data. When
used appropriately, Montage can improve the classification
accuracy. However, it does not necessarily improve perfor-
mance on all EEG segment classes equally. Therefore, once
the neurologists figure out how Montage performs on each
individual class by applying the split primitive on the clas-
sification results, they can then use the split primitive again
to partition the training data into six disjoint subsets corre-
sponding to the six seizure classes. Then, Montage is only
applied to the data subsets that clearly benefit from it. We
express this use-case through the following Dagger specifi-
cation:

1: RUN PIPELINE P1 WITH eeg_all
2: RUN BLOCK MONTAGE IN P1 WITH SPLIT eeg_all

WHERE class_label <> Other

In line 1, the user runs pipeline P1 (Figure 1(b)) on all
the training data (eeg all). Then the user realizes that the
accuracy of the produced classification model is not good for
one class (Other). In line 2, Dagger splits the training data
into different partitions based on the class label. Dagger
then invokes the Montage routine (encapsulated in the block
Montage in P1) on the resulting partitions except those with
the class label Other. The user will then use the output of
this pipeline to train the model.

Data breakpoints: Data breakpoints are used to express
test conditions on the code-handled data at different stages
in the pipeline. They are useful in speeding up our learning
pipeline, i.e., we can stop the execution of the pipeline if an
assertion on the data fails. For example, the neurologists of-
ten want to know if the classification accuracy of a targeted



Data tables
Data table

Data table (base)

Data tables
Data table
Delta tables

(updated tuples, 
deleted tuples, 
appended tuples)

pipeline_table 
(pipeline_id, 

pipeline_name, …) 

runs_table
(run id, time id, 

block, …) 

Blocks_table 
(block_id, symbol, 

data_ref)

reconstruct

Figure 2: Logging manager tables

class is improved after collecting new labeled EEG exam-
ples for this class and update the model. In this case, the
neurologists can set a data breakpoint that will terminate
the modeling process immediately once the error rate in this
targeted class is above a given threshold.
Compare: The compare primitive is also frequently used in
the learning pipeline to help neurologists determine if a new
preprocessing operation or parameter setting would make
a difference on the final output of the pipeline. For exam-
ple, the neurologists expected that high pass/low pass filters
(which discard frequencies that are not of interest from the
EEG data) could improve the classification accuracy. This
hypothesis was not confirmed after running the model. Con-
sequently, if we can compare the EEG segments after apply-
ing the filter operator with those obtained without filtering,
and find they are similar, then we can infer that the ML
accuracy does not change much, allowing us to skip the ex-
pensive modeling and training process on the version of the
pipeline with the filter operators.

3. LOGGING MANAGER
Now that we have described a motivating application, we

discuss some of the technical challenges in building Dagger,
beginning with a description of how the logging manager
works to efficiently record intermediate pipeline states.

Every run of the pipeline produces data across the pipeline
blocks. In order to persist this data for debugging, we need
to design a storage model that can accommodate data types
that are popular in Python.

The storage model of Dagger (Figure 2) consists a set of
tables (stored in a Postgres database), each containing in-
formation about: (1) variable names in the code along with
their values; (2) pipeline block identifiers where each variable
value is reported; (3) run identifier that tracks which data
items correspond to each pipeline run; and (4) time identi-
fiers that reflect the order in which those data items were
produced in a given run (as determined by the pipeline).

By default, we support two data types in the storage
model of Dagger : (1) Scalar: these include numeric types
(e.g., integer, float); and (2) Arrays: which include any
data item that can be represented as an array of any di-
mensions (e.g., tensor, time series). For instance, Pandas
DataFrames are captured using Arrays

While we could have more complex data types, by initially
supporting these two types we found we were able to support
the needs of most pipelines.

3.1 Delta Logging
An important question to answer is: what to log from

a given pipeline? Obviously, logging at the code-statement
level is not an option, i.e., it will produce too much redun-
dant data. Recent efforts have addressed the data version-
ing problem [4, 10, 9], however, those proposals do not deal
with code-handled data and are mainly meant for versioning
input datasets and managing their evolution over time [17].
We propose to log data values at their initial state (base ver-
sion) and then only record their changes across the pipeline
blocks. This requires implementing a process that keeps
track of the part of data that has changed from one state-
ment (or pipeline block) to another. We propose a 3-phase
approach to (1) build a list of all the variables that are ac-
cessed at least once (read or written) in each block; (2) de-
tect which data structures have changed from one block to
another; and (3) version the changed data structures across
blocks.
Scope determination: in this phase, Dagger performs a
static analysis of the code to determine which variables (or
data structures) are within the scope of each user-defined
pipeline block. We are just interested in the scope of vari-
ables, i.e., we just want to know which variables can be ac-
cessed within each block. This operation can be performed
using classical dataflow analysis methods [3] (e.g., worklist
algorithm). After this step, Dagger will have a list of all the
variables that are in the scope of each block.
Change detection: in this step, Dagger determines if a
variable has changed its value from one block to another (the
same variable can appear in multiple blocks). Specifically,
for a given variable v in the scope of a block b1, Dagger
determines if v has changed its value in b2, where b1 → b2.
While this is trivial for scalar types, more efficient methods
are needed for tables (e.g., Pandas DataFrames) of large
sizes.
Versioning: There are many ways we could approach data
versioning, but in general, given consecutive blocks b1 and
b2 where b1 → b2 and a variable D with two versions D1

and D2 in b1 and b2 respectively, we would like to determine
the changes that happened from D1 to D2 (i.e., which data
values have been changed). We first determine the types of
changes from D1 to D2, i.e., update, append and deletion
and then store sufficient state to reconstruct both D1 and
D2 (e.g. D1 and a delta from it to D2). It is important to
point out that the intermediate data across pipeline blocks
can be quite large, especially if the pipeline includes many
blocks. We are planning to address this problem by adapt-
ing existing data structures (e.g., Merkel trees [6]) to work
efficiently in the context of code-handled data.

4. DAGGER QUERY LANGUAGE (DQL)
Because Dagger manages code-handled data, it is crucial

to have an easy-to-use language for users to interact with
Dagger pipelines without having to write SQL queries di-
rectly on its storage manager tables. Dagger supports query-
ing the data across the pipeline blocks. Since Dagger stores
the data in a relational database, all the SQL operations on
the stored data come for free. Dagger exposes a SQL-like
language to abstract the key primitives we use in data de-
bugging. We now present the overall syntax of DQL. The
DQL examples reported in the following are based on Use
Case 2 introduced in Section 1.1, where a pipeline (composed
of several Python scripts) has been devised using Dagger to
preprocess spatio-temporal data.
block: DQL supports querying data structures in specific



pipeline blocks or between specific blocks. For instance, we
have the following DQL query Q1:

LOOKUP A FROM P2 WHERE SCOPE BETWEEN B=1 and B=2

The above query will perform a projection over all the at-
tributes of data structure A (stored as a table) from pipeline
P2 between the blocks 1 and 2. Internally, Q1 is rewritten
in SQL and posted to Dagger ’s database.
Value lookup: we formulate LOOKUP queries to search
for a specific data value in a given block or pipeline. The
supported values for lookup are strings and numerical types.

Example 4.1. A researcher at MGH, Julie, is interested in
analyzing and predicting a particular infection disease (C.
diff [7]), in a particular floor of the hospital, but at the end
of the data preparation pipeline she finds data errors (e.g.,
dates inconsistencies and patients assigned to rooms that do
not exist). To narrow down the search space to locate and
fix those errors, she writes the following DQL query:

LOOKUP ‘C. DIFF’, ‘F1%’
FROM PIPELINE P2
WHERE SCOPE BETWEEN B=1 AND B=5

The query returns all intermediate data of pipeline P2
(between blocks 1 and 5), that contain the string “C. DIFF”
and a string starting with “F1” (i.e., building F, floor 1).

Ordered lookup: a typical query one would want to write
is: did a change X (to a data structure) happen before or af-
ter another change Y . Or did a particular data item appear
before or after another? Those queries are particularly im-
portant for causality analysis [11]. To express such queries,
we need to be able to reason about the “time steps” within a
given run. As we discussed in Section 3, the logging manager
keeps track of the time steps for any given run.

Example 4.2. Julie notices that two patients tested posi-
tive to the same rare bacterial strain, but never shared the
same hospital room. This could be an error introduced in
the pipeline, i.e., maybe at some point in the pipeline, those
two patients shared the same room, but then the room num-
ber was modified. To test this hypothesis, Julie writes the
following DQL query:

LOOKUP A FROM PIPELINE P2
WHERE (A[ROOM] = ‘F12’
BEFORE A[ROOM] <> ‘F12’)
AND A[INFECTION] = ‘C. DIFF’

The query returns the records for which the value of the
attribute ROOM has changed from ‘F12’ to something else,
for patients with the C. diff infection.

Backward and forward propagation: DQL supports
editing a data value or a set of values and propagate the
change forward or backward in the pipeline. For instance, if
we want to propagate the value of D from v1 to v2 forward
from blocks b1 to b2 where b1 → b2, Dagger proceeds as
follows: (1) Dagger first posts LOOKUP queries for D = v1
on blocks b1 and b2; (2) the corresponding records in the
database are updated to v2; (3) from the database, Dag-
ger keeps track of each code line number where D is ac-
cessed; (3) when b1 or b2 are re-run, Dagger pulls D from
the database at runtime to reflect their updated state in the
code.

Example 4.3. Julie notices that some patients are in mul-
tiple locations (in the hospital floor plan) at the same time
(e.g., with a LOOKUP query) because newborns inherit their
unique identifiers from their mothers. To fix this data issue,
and check the effects of this fix on the pipeline output, Julie
writes the following DQL query:

EDIT A[ID] = new_id()
FROM PIPELINE P2
WHERE A[DESCRIPTION] LIKE ‘%NEWBORN%’

where new id() is a function that returns an id that is not present

in the id column of A.

Inter-run queries: users can also query data items across
different runs. For instance:

LOOKUP A FROM P2 WHERE RUNS ALL
LOOKUP A FROM P2 WHERE RUNS BETWEEN 1 and 10

The first query reports the values of A in all the runs
performed so far of pipeline P2 while the second one reports
A’s value in P2 only in the first 10 runs.

5. CURRENT PROTOTYPE
We have a preliminary version of Dagger already incorpo-

rated into Data Civilizer 2.0 (DC2) [14]. In DC2, pipeline
modules are created through a Python API. The version of
Dagger in DC2 provides the following features for pipeline
debugging: (1) breakpoints: users implement an API to cre-
ate a data breakpoint object or the breakpoints are cre-
ated automatically by splitting the input data into multiple
chunks of varying size (e.g., [10, 20, 100]); (2) tracking: track
data items that meet certain conditions; (3) pause/resume:
suspend pipeline execution upon the user’s request; (4) filter:
based on user-defined predicates, we filter the input/output
data from different modules in the pipeline.

DC2 and Dagger have been used as part of our collabo-
ration with MGH (Use Case 1, presented in Section 2). The
collaboration with the Infectious Disease group (Use Case
2) is still in its early stages, and we are at the stage of data
preparation.

Figure 3 illustrates a running example of building the
MGH pipelines (Use Case 1) in DC2. Figure 3(a) illustrates
the seizure prediction pipeline (ML 4). This pipeline in-
cludes all the cleaning operators and outperforms, in terms
of accuracy, other earlier iterations of the pipeline (ML 1,
ML 2 and ML3) which either did not include any cleaning, or
included only a subset of the cleaning operators. The results
are reported in Figure 3(b) where we note that ML 4 has
better validation accuracy than the other pipelines. It also
shows a gradual improvement in accuracy over time as it
processes more data. Figure 3(c) shows an overview of the
preliminary version of Dagger, the red part indicates that
a data breakpoint evaluated to true during the run of the
pipeline and hence the pipeline execution was suspended.
During the presentation of this paper, we plan to conduct
a demo of Dagger which will feature real-world pipeline de-
bugging examples using real datasets and scenarios.

We have run the logging component of Dagger on the
MGH pipeline (Use Case 2) with 10k records and the run-
time overhead of Dagger was about 0.54 second. We are
currently implementing optimizations to speed up logging,
e.g., asynchronous logging where database logging is done
periodically to reduce the number of I/Os.



Figure 3: Dagger integrated in DC2 with example pipelines generated at different iterations

6. CONCLUSION
We presented Dagger, an end-to-end data debugger that

assists users in debugging code-handled data. We presented
the primitives of Dagger in the context of real-world sce-
narios we encountered over the course of our ongoing col-
laborations with two groups from Mass. General Hospital.
Dagger sets the stage for exciting research challenges that re-
volve around assisting data scientists identify and then mit-
igate data-related problems in their data pipelines. Dagger
is a work-in-progress project and there are several technical
challenges we are addressing to release it such as (1) de-
vising indexing data structures to efficiently support DQL
queries; (2) managing Python-specific language constructs
(e.g., aliasing); and (3) minimizing the overall overhead that
Dagger incurs on the runtime.

7. REFERENCES
[1] 2018 Machine Learning and Data Science Survey.

https://www.kaggle.com/kaggle/kaggle-survey-2018.
Accessed: August 2019.

[2] mlflow: An open source platform for the machine
learning lifecycle. https://mlflow.org.

[3] A. V. Aho, M. S. Lam, R. Sethi, and J. D. Ullman.
Compilers: Principles, Techniques, and Tools (2Nd
Edition). Addison-Wesley Longman Publishing Co.,
Inc., Boston, MA, USA, 2006.

[4] S. Bhattacherjee, A. Chavan, S. Huang,
A. Deshpande, and A. Parameswaran. Principles of
dataset versioning: Exploring the recreation/storage
tradeoff. PVLDB, 2015.

[5] L. Cao, W. Tao, S. An, J. Jin, Y. Yan, X. Liu, W. Ge,
A. Sah, L. Battle, J. Sun, R. Chang, B. M. Westover,
S. Madden, and M. Stonebraker. Smile: A system to
support machine learning on eeg data at scale. VLDB
2019.

[6] C. Dods, N. P. Smart, and M. Stam. Hash based
digital signature schemes. In N. P. Smart, editor,
Cryptography and Coding, pages 96–115, Berlin,
Heidelberg, 2005. Springer Berlin Heidelberg.

[7] J. C. et al. Clostridium difficile infection: review.
European Journal of Clinical Microbiology &

Infectious Diseases, 38(7):1211–1221, Jul 2019.

[8] L. H. et al. American clinical neurophysiology society’s
standardized critical care eeg terminology: 2012
version. Journal of Clinical Neurophysiology, (1), 2013.

[9] S. Huang, L. Xu, J. Liu, A. J. Elmore, and
A. Parameswaran. Orpheusdb: Bolt-on versioning for
relational databases. PVLDB, 2017.

[10] M. Maddox, D. Goehring, A. J. Elmore, S. Madden,
A. Parameswaran, and A. Deshpande. Decibel: The
relational dataset branching system. PVLDB, 2016.

[11] M. Makar, J. V. Guttag, and J. Wiens. Learning the
probability of activation in the presence of latent
spreaders. CoRR, abs/1712.00643, 2017.

[12] W. McKinney. pandas: a foundational python library
for data analysis and statistics.

[13] E. Niedermeyer and F. da Silva.
Electroencephalography: Basic Principles, Clinical
Applications, and Related Fields. Lippincott Williams
& Wilkins, 2005.

[14] E. K. Rezig, L. Cao, M. Stonebraker, G. Simonini,
W. Tao, S. Madden, M. Ouzzani, N. Tang, and A. K.
Elmagarmid. Data civilizer 2.0: A holistic framework
for data preparation and analytics. VLDB 2019.

[15] W. Tao, X. Liu, Y. Wang, L. Battle, Ç. Demiralp,
R. Chang, and M. Stonebraker. Kyrix: Interactive
pan/zoom visualizations at scale. In Computer
Graphics Forum, volume 38, pages 529–540. Wiley
Online Library, 2019.

[16] C. Thornton, F. Hutter, H. H. Hoos, and
K. Leyton-Brown. Auto-weka: Combined selection and
hyperparameter optimization of classification
algorithms. In Proceedings of the 19th ACM SIGKDD
International Conference on Knowledge Discovery and
Data Mining, KDD ’13, pages 847–855. ACM, 2013.

[17] M. Vartak, J. M. F. da Trindade, S. Madden, and
M. Zaharia. MISTIQUE: A system to store and query
model intermediates for model diagnosis. pages
1285–1300, SIGMOD 2018.

[18] D. Xin, L. Ma, J. Liu, S. Macke, S. Song, and A. G.
Parameswaran. Helix: Accelerating human-in-the-loop
machine learning. PVLDB, 2018.


