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a b s t r a c t

In big data sources, real-world entities are typically represented with a variety of schemata and formats
(e.g., relational records, JSON objects, etc.). Different profiles (i.e., representations) of an entity often
contain redundant and/or inconsistent information. Thus identifying which profiles refer to the same
entity is a fundamental task (called Entity Resolution) to unleash the value of big data. The naïve
all-pairs comparison solution is impractical on large data, hence blocking methods are employed to
partition a profile collection into (possibly overlapping) blocks and limit the comparisons to profiles
that appear in the same block together. Meta-blocking is the task of restructuring a block collection,
removing superfluous comparisons. Existing meta-blocking approaches rely exclusively on schema-
agnostic features, under the assumption that handling the schema variety of big data does not pay-off
for such a task.

In this paper, we demonstrate how ‘‘loose’’ schema information (i.e., statistics collected directly
from the data) can be exploited to enhance the quality of the blocks in a holistic loosely schema-aware
(meta-)blocking approach that can be used to speed up your favorite Entity Resolution algorithm. We
call it Blast (Blocking with Loosely-Aware Schema Techniques). We show how Blast can automatically
extract the loose schema information by adopting an LSH-based step for efficiently handling volume
and schema heterogeneity of the data. Furthermore, we introduce a novel meta-blocking algorithm
that can be employed to efficiently execute Blast on MapReduce-like systems (such as Apache
Spark). Finally, we experimentally demonstrate, on real-world datasets, how Blast outperforms the
state-of-the-art (meta-)blocking approaches.

© 2019 Elsevier Ltd. All rights reserved.

1. Introduction

In the context of big data, real-world entities are typically
represented in a variety of formats, such as: records of rela-
tional databases, RDF triples, JSON objects, etc. Moreover, the
profiles (i.e., the representations) of a real-world entity often
contain overlapping, complementary and/or inconsistent infor-
mation. Hence, a fundamental task for unleashing the value of
this data is Entity Resolution (ER) [1–3], which aims to identify
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and reconcile the entity profiles that refer to the same real-world
entity.

Background: When the volume of the data is large, checking all
possible profile pairs to find matches is not a practical solution
due to its quadratic complexity. For this reason, typically, signa-
tures (blocking keys) are extracted from the profiles and employed
to index them into blocks [4]. Then, the all-pairs comparison
is limited to profiles within a block, significantly reducing the
complexity of ER.

Traditional blocking techniques typically rely on a-priori
schema knowledge to devise good blocking keys by combining
attribute values; hence suffering from two well-known issues:
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1. Given a known schema, selecting which attributes to com-
bine requires either domain experts or labeled data to train
a classification algorithm [5].

2. If two datasets have different schemata, a schema-
alignment must be executed before ER. Unfortunately, big
data is typically highly heterogeneous, noisy (missing/
inconsistent data), and large in volume of schemata, so that
traditional schema-alignment techniques are no longer ap-
plicable [6,7]. For instance, Google Base contains over 10k
entity types that are described with 100k unique schemata;
in such a scenario, performing and maintaining a schema
alignment is impractical [6].

To work around these issues, schema-agnostic blocking has been
proposed [7,8]. This approach extracts blocking keys from the
profiles by treating them as bags-of-words. For instance, Token
Blocking [7] considers each token in a profile as a blocking key;
in other words, each pair of profiles sharing at least one token
(regardless to the attribute in which it appears) is considered as a
candidate match, as shown in the example of Fig. 1(a–b). By plac-
ing each profile in multiple blocks, schema-agnostic techniques
on one hand reduce the likelihood of missing matches, on the
other hand increase the likelihood of placing non-matching pro-
files in the same blocks. This allows the achievement of high recall
(i.e., the percentage of detected matching profiles), but at the
expense of precision (i.e., the ratio between detected matching
profiles and executed comparisons).

To improve the precision of schema-agnostic blocking, meta-
blocking approaches have been proposed [8]. Meta-blocking is
the task of restructuring a set of blocks to retain only the most
promising comparisons. Meta-blocking represents a block col-
lection as a weighted graph, called blocking graph, where each
entity profile is a node and an edge exists between two nodes if
the corresponding profiles appear at least in one block together.
The edges are weighted to capture the likelihood of a match.
An example of a blocking graph is shown is Fig. 1(c), where the
weight of an edge is equal to the number of co-occurrences of its
adjacent profiles in the blocks.1 Then, an edge-pruning scheme
is applied to retain only the most promising ones. The most
accurate strategy to prune edges is to consider for each node all
its adjacent edges, and retain only those having a weight higher
than the local average (Fig. 1(c)). At the end of the process, each
pair of nodes connected by an edge forms a new block.

Our Approach: We observe that existing meta-blocking tech-
niques exclusively leverage schema-agnostic features to restruc-
ture a block collection. Inspired by the attribute-match induction
approaches [7,9], our idea is to exploit schema information ex-
tracted directly from the data for enhancing the quality of the
blocks. Moreover, we argue that a holistic approach combining
meta-blocking and loosely schema-aware techniques should be at-
tempted. Hence, we introduce our approach called Blast (Blocking
with Loosely-Aware Schema Techniques). Blast can easily collect
significant statistics (e.g. similarities and entropies of the values
in the attributes) that approximately describe the data sources
schemas. This loose schema information is efficiently extracted
even from highly heterogeneous and voluminous datasets, thanks
to a novel LSH-based pre-processing step that guarantees a low
time requirement. Then, the loose schema information is ex-
ploited during both the blocking and meta-blocking phases to
produce high quality block collections.

To get an intuition of the benefits of loose schema infor-
mation, consider the example in Fig. 2. Say that, among the
different data sources, only the attributes about person names

1 Co-occurrence in blocks is employed for the sake of the example; more
sophisticated weighting functions can be employed (see Section 3.3).

have similar values to some extent. Blast clusters together these
attributes, while the others (‘‘not enough similar ’’ to each other)
are grouped in a unique general cluster. Thus, it can disam-
biguate the token ‘‘Abram’’ as person name from its other uses
(e.g., street name). Consequently, the block associated to the
token ‘‘Abram’’ is divided into two new blocks (Fig. 2(a)) affecting
the blocking graph: the weights of the edges ep1−p4 and ep2−p3
both decrease (Fig. 2(b)). Therefore, the local thresholds for meta-
blocking changes, and one further superfluous edge (ep1−p4 ) is
correctly removed in the pruning step (Fig. 2(b)). The precision
increases, while the recall remains the same. Yet, one superfluous
comparison is still entailed (ep2−p3 ) and loose schema information
can be further employed to enhance the quality of the blocking.
The intuition is that some attributes are more informative than
others and can generate more significant blocking keys. Blast
measures the information content of an attribute through the
Shannon entropy [10]. Then, it derives an aggregate entropy mea-
sure for each cluster of attributes. Finally, it uses these values
as a multiplicative coefficient in the weighting function of the
blocking graph. For our toy example, the aggregate entropies are
listed in Fig. 3(a), and the final blocking graph after the pruning
phase is showed in Fig. 3(b),2 where the superfluous edge ep2−p3
has now been correctly removed.

Contributions: Overall, we make the following main contribu-
tions:

• an approach to automatically extract loose schema informa-
tion from a dataset based on an attribute-match induction
technique;
• an unsupervised graph-based meta-blocking approach able to

leverage this loose schema information;
• an LSH-based attribute-match induction technique for effi-

ciently scale to large datasets with a high number of attributes;
• an algorithm to efficiently run Blast (and any other graph-based

meta-blocking method) on MapReduce-like systems, to take
full advantage of a parallel and distributed computation;
• the evaluation of our approach on seven real-world datasets,

showing how Blast outperforms the state-of-the-art meta-
blocking methods.

A preliminary version of Blast was published in [11]. In this
paper, Blast has been extended to take advantage of a parallel
and distributed computation for significantly reducing the overall
execution time of the ER process, which is typically onerous in the
big data context. We propose broadcast meta-blocking (Section 4):
a novel algorithm to run any graph-based meta-blocking method
(including Blast) on distributed MapReduce-like systems, such as
Apache Spark. Finally, we provide more extensive experiments
on large-scale datasets,3 which showcase that our solution effi-
ciently scales on MapReduce-like systems and outperforms the
state-of-the-art meta-blocking methods (Section 5).

Organization: The remainder of this paper is structured as fol-
lows. Section 2 provides preliminaries. Section 3 presents Blast
and Section 4 describes basic concepts for distributed meta-
blocking on MapReduce-like systems and discusses Blast paral-
lelization. Section 5 presents the datasets, the evaluation met-
rics, and the experiments. Section 6 examines the related work.
Finally, Section 7 concludes the paper.

2 For the sake of the example the weights are computed starting from the
blocking graph of Fig. 2(b); in the actual processing only one blocking graph is
generated, and a unique pruning step is performed.
3 Two additional datasets are introduced in Section 5: citation3 and

freebase.
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Fig. 1. (a) A collection of entity profiles from a data lake where data is stored in different formats. (b) A block collection produced with Token Blocking; notice that
the tokens appearing only in one profile do not generate any comparison (i.e., any block). (c) The derived blocking graph and the effect of meta-blocking: dashed
lines represent pruned edges, and red ones the superfluous comparisons not removed. In this toy example, the weight of each edge connecting two profiles pi and
pj is equal to the number of blocks in which pi and pj co-occur — other weighting functions can be employed [8]. For instance, p1 and p2 share only the block
‘‘Abram’’, so the weight of the edge that connects them is 1. Then, the pruning is performed computing a local threshold for each profile (e.g., the average of its
edges’ weights) and keeping only the edges having a weight higher than the local threshold. For instance, the weights of p1 edges are {1, 3, 4} and their average is
2.7, so the edge that connects p1 with p2 can be discarded, since 1 < 2.7 . (For interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)

Fig. 2. (a) The blocking key ‘‘Abram’’ is disambiguated by employing the loose schema information; as a consequence, the profiles p1 and p4 share one less block
than before — this means also that the edge e1−4 decreases its weight accordingly, from 3 to 2. (b) The effect on the new blocking graph weights and on the
meta-blocking process, w.r.t. Fig. 1(c): one further edge is correctly removed (e1−4 , dashed red line) compared to Fig. 1(c). As a matter of fact, e1−4 is now pruned,
since it has a weight (=2) lower than the local threshold of p1 (=2.3); while in Fig. 1(c), the weight of e1−4 is 3, which is greater than the local threshold of p1 (=2.7)
— notice that if the weight of e1−4 varies, the threshold of p1 also changes, since the latter depends on the former.

Fig. 3. (a) Attribute entropy information and its effect (b) on the blocking graph pruning. In this toy example, the weighting function is: w(pi, pj)=
∑

k∈Ki∩Kj
H(bk),

where Ki and Kj are the set of blocking keys of pi and pj respectively, and H(bk) is the aggregate entropy of the cluster to which bk belongs to. In (b), the effect on
the new blocking graph weights and on the meta-blocking process is shown w.r.t. Fig. 2(b): one further edge is correctly removed (e2−3 , dashed red line) compared
to Fig. 2(b). As a matter of fact, e2−3 is now pruned, since it has a weight (=6) lower than the local threshold of p1 (=6.3).

2. Preliminaries

This section defines preparatory concepts and notation em-
ployed throughout the paper.

2.1. Blocking for entity resolution

An entity profile is a tuple composed of a unique identifier and
a set of name–value pairs ⟨a, v⟩. AP is the set of possible attributes
a associated to a profile collection P . An profile collection P is a
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set of profiles. Two profiles pi, pj ∈ P are matching (pi≈pj) if they
refer to the same real world object; Entity Resolution (ER) is the
task of identifying those matches given P .

The naive solution to ER implies |P1|·|P2| comparisons, where
|Pi| is the cardinality of a profile collection Pi. Blocking ap-
proaches aim to reduce this complexity by indexing similar pro-
files into blocks according to a blocking key (i.e., the indexing
criterion), restricting the actual comparisons of profiles to those
appearing in the same block.

Given the dataset of Fig. 1(a), an example of schema-agnostic
blocking key is shown in Fig. 1(b). Otherwise, a schema-based
blocking key might be the value of the attribute ‘‘name’’; meaning
that only profiles that have the same value for ‘‘name’’ will
be compared (the dataset in Fig. 1(a) would require a schema-
alignment). A set of blocks B is called block collection, and
its aggregate cardinality is ∥B∥=

∑
bi∈B
∥bi∥, where ∥bi∥ is the

number of comparisons implied by the block bi.
We follow best practices to establish the quality of a block

collection [7,12]: the problem of determining if two profiles ac-
tually refer to the same real-world object is the task of the Entity
Resolution Algorithm. We assume there is such an algorithm able
to determine whether two profiles are matching or not. In fact,
Blast is independent of the Entity Resolution Algorithm employed,
just as the other state-of-the-art blocking techniques compared
in this paper [12,13].

2.1.1. Dirty ER and clean–clean ER
Papadakis et al. [12] have formalized two types of ER tasks:

Dirty ER and Clean–Clean ER. The former refers to those scenarios
where ER is applied to a single data source containing duplicates;
this problem is also known in literature as deduplication [14]. In
the latter, ER is applied to two or more data sources, which are
considered ‘‘clean’’, i.e., each source considered singularly does
not contain duplicate. This type of ER is also known as Record
Linkage [14]. As in [11–13,15,16], in this work, we adopt this
classification as well.

Notice that, in Clean–Clean ER the comparisons among profiles
that belong to the same data source are avoided (for any underly-
ing blocking technique) [12]. Hence, the number of comparisons
∥bi∥ required for a block bi depends on the type of ER: for Dirty ER,
a block produces ∥bi∥ =

(
|bi|
2

)
, where |bi| is the cardinality of the

block and all the possible comparisons are considered; while, for
Clean–Clean ER, a block produces ∥bi∥ =

∑N
j=1

∑N
k=j+1 |b

j
i| · |b

k
i |,

where bji is the subset of P j indexed in the block bi, and N is the
number of data sources.

2.1.2. Metrics
We employ Recall and Precision to evaluate the quality of a

block collection B, as in [1]. The recall measures the portion of
duplicate profiles that are placed in at least one block; while the
precision measures the portion of useful comparisons, i.e., those
that detect a match. Formally, precision and recall of a block-
ing method is determined from the block collection B that it
generates:

recall =
|DB
|

|DP |
; precision =

|DB
|

∥B∥
;

where DB is the set of duplicates appearing in B and DP is the
set of all duplicates in the collection P .

Typically, schema-agnostic blocking yields high recall, but at
the expense of precision. The low precision is due to the unneces-
sary comparisons: redundant comparisons entail the comparison
of profiles more than once; and superfluous comparisons entail
the comparison of non-matching profiles (pi ̸≈pj).

For instance, considering the block collection of Fig. 1(b), the
pair of profiles (p1, p3) appears in many blocks (‘‘Car’’, ‘‘Main’’,

etc.), thus, if all the blocks are evaluated as traditional block-
ing techniques do [4] (i.e., without performing meta-blocking),
p1 and p3 are compared more than once — performing redun-
dant comparisons. Fig. 1(b) also provides examples of superfluous
comparisons, such as the comparisons between p2 and p5, and
between p4 and p5, entailed by the block ‘‘Ellen’’ — we call these
comparisons superfluous because p5 do not match neither with p2
nor p4.

Attribute-match induction4 approaches can be employed to
enhance schema-agnostic blocking by limiting the superfluous
comparisons. Meta-blocking is the state-of-the-art approach to
reduce both superfluous and redundant comparisons from an
existing block collection. In the following we formally define
attribute-match induction and meta-blocking.

2.2. Attribute-match induction

The goal of attribute-match induction is to identify groups
of similar attributes between two profile collections P1 and P2
from the distribution of the attribute values, without exploiting
the semantics of the attribute names. This information can be
exploited to support a schema-agnostic blocking technique, i.e., to
disambiguate blocking keys according to the attribute group from
which they are derived (e.g. tokens ‘‘Abram’’ in Fig. 1(b)).

Definition 1. Attribute-match induction. Given two profile collec-
tions P1,P2, attribute-match induction is the task of identifying
pairs {

⟨
ai, aj

⟩
| ai ∈ AP1 , aj ∈ AP2} of similar attributes according

to a similarity measure, and use those pairs to produce the
attributes partitioning, i.e., to partition the attribute name space
(AP1×AP2 ) in non-overlapping clusters.

This task is substantially different from the traditional schema-
matching, which aims to detect exact matches, hierarchies, and
containments among the attributes [17].

An attribute-match induction task can be defined through four
components, formalized in the following: (i) the value transfor-
mation function (ii) the attribute representation model, (iii) the
similarity measure to match attributes, and (iv) the clustering
algorithm.

(i) The value transformation function. Given two profile col-
lections P1 and P2, each attribute is represented as a tuple⟨
aj, τ (Vaj )

⟩
, where: aj ∈ APi is an attribute name; Vaj is

the set of values that an attribute aj can assume in Pi;
and τ is a value transformation function returning the set
of transformed values {τ (v) : v ∈ Vaj}. The function τ
generally is a concatenation of text transformation func-
tions (e.g. tokenization, stop-words removal, lemmatization).
Given a τ transformation function, the set of possible val-
ues in the profile collections is TA = TaP1

⋂
TaP2

, where
TaP =

⋃
ai∈AP

τ (Vai ).
(ii) The attribute representation model. Each attribute ai is

represented as a vector Ti (called the profile of ai), where
each element vin ∈ Ti is associated to an element tn ∈ TA.
If tn /∈ τ (Vai ), then vin is equal to zero. While, if tn ∈
τ (Vai ), then vin assumes a value computed employing a
weighting function, such as [7]: TF-IDF (tn) or the binary-
presence of the element tn in τ (Vai ) (i.e., vin=1 if tn ∈
τ (Vai ), 0 otherwise). For example, say that the value trans-
formation function τ is the tokenization function, and that
the function to weight the vector elements is the binary-
presence. Then, the attributes are represented as a matrix:

4 We call attribute-match induction the general approach to group similar
attributes, while we refer to the specific technique proposed in [7] with Attribute
Clustering.
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rows correspond to the attributes; the columns correspond
to the possible tokens appearing in the profile collections;
and each element vin is either 1 (if the token tn appear in
the attribute ai) or 0 (otherwise).

(iii) The similarity measure. For each possible pair of attributes
(aj, ak) ∈ (AP1×AP2 ), their profiles Tj and Tk are compared
according to a similarity measure (e.g. Dice, Jaccard, Cosine).
Notice that the similarity measure must be compatible
with the attribute model representation; for instance, the
Jaccard similarity cannot be employed with the TF-IDF
weighting.

(iv) The clustering algorithm. The algorithm takes as input the
attribute names and the similarities of their profiles and
performs the non-overlapping partitioning of the attribute
names. (See Section 3.1.1 for more details). Its output is
called attributes partitioning.

2.3. Meta-blocking

The goal of meta-blocking [12] is to restructure a collection of
blocks, generated by a redundant blocking technique, relying on
the intuition that the more blocks two profiles share, the more
likely they match.

Definition 2. Meta-blocking. Given a block collection B, meta-
blocking is the task of restructuring the set of blocks, produc-
ing a new block collection B′ with significantly higher precision
and nearly identical recall, i.e.,: precision(B′)≫precision(B) and
recall(B′)≃recall(B).

In graph-based meta-blocking (or simply meta-blocking from
now on), a block collection B is represented by a weighted graph
GB{VB, EB,WB} called blocking graph. V is the set of nodes
representing all pi ∈ P . An edge between two entity profiles
exists if they appear in at least one block together: E = {eij :
∃pi, pj ∈ P | |Bij| > 0} is the set of edges; Bij = Bi ∩ Bj, where
Bi and Bj are the set of blocks containing pi and pj respectively.
WB is the set of weights associated to the edges. Meta-blocking
methods weight the edges to capture the matching likelihood of
the profiles that they connect. For instance, block co-occurrence
frequency (a.k.a. CBS) [8,18] assigns to the edge between two
profiles pu and pv a weight equal to the number of blocks they
shares, i.e.: wCBS

uv = |Bu| ∩ |Bv|. Then, edge-pruning strategies are
applied to retain only more promising ones. Thus, at the end of
the pruning, each pair of nodes connected by an edge forms a
new block of the final, restructured blocking collection. Note that
meta-blocking inherently prevents redundant comparisons since
two nodes (profiles) are connected at most by one edge.

Two classes of pruning criteria can be employed in meta-
blocking: cardinality-based, which aims to retain the top-k edges,
allowing an a-priori determination of the number of comparisons
(the aggregate cardinality) and, therefore, of the execution time,
at the expense of the recall; and weight-based, which aims to
retain the ‘‘most promising’’ edges through a weight threshold.
The scope of both pruning criteria can be either node-centric or
global: in the first case, for each node pi the top-ki adjacent edges
(or the edges below a local threshold θi) are retained; in the sec-
ond case, the top-K edges (or the edges below a global threshold
Θ) are selected among the whole set of edges. The combination
of those characteristics leads to four possible pruning schemas: (i)
Weight Edge Pruning (WEP) discards all the edges with weight
lower than Θ; (ii) Cardinality Edge Pruning (CEP) sorts all the
edges by their weights in descending order, and retains only the
first K ; (iii) Weight Node Pruning (WNP [12]) considers in turn
each node pi and its adjacent edges, and prunes those edges that
are lower than a local threshold θi; (iv) Cardinality Node Pruning
(CNP [12]) similarly to WNP is node centric, but instead of a
weight threshold it employs a cardinality threshold ki (i.e., retain
the top-ki edges for each node pi).

3. The blast approach

The main goals of Blast are: to provide an efficient, scal-
able and automatic method to extract loose schema information
from the data; to perform a holistic combination of blocking and
meta-blocking for ER exploiting this loose schema information.

These are the main novelties w.r.t. other existing meta-
blocking techniques, which are completely schema-agnostic [8,
12,13].

Our approach takes as input two profile collections, and auto-
matically generates a block collection. It consists of three main
phases, as schematized in Fig. 4: loose schema information ex-
traction, loosely schema-aware blocking, and loosely schema-aware
meta-blocking. In the following we give a high-level description of
each phase, then we dedicate a subsection for the details of each
phase in turn.

Phase (1) The loose schema information is extracted. It con-
sists of: the attributes partitioning, and the aggregate-
entropy. The former describes how the attributes are
partitioned according to the similarity of their values;
it is the result of the attribute-match induction task
(Section 2.2). The latter is a measure associated to
each cluster of attributes, derived from the attribute
entropies. We also introduce a Locality-Sensitive Hash-
ing (LSH) [19] optional step to reduce the compu-
tational complexity when dealing with data sources
characterized by a high number of attributes.

Phase (2) A traditional schema-agnostic blocking technique is
enhanced by exploiting the attributes partitioning to
disambiguate keys according to the attribute partition
from which they are extracted. In particular, Blast em-
ploys Token Blocking, and we call the derived method
Loose Schema Blocking.

Phase (3) A graph-based meta-blocking is applied to the block
collection generated in the previous phase. In particu-
lar, Blast meta-blocking exploits the aggregate entropy
to weight the blocking graph. The basic idea is the fol-
lowing. Each edge in the blocking graph is associated
to a set of blocking keys. Each blocking key is associ-
ated to an attribute. Each attribute has an information
content that can be measured through its entropy.
Hence, the weight of an edge can be proportional to
the information content of its associated attributes.
For instance, consider independent datasets contain-
ing records about people (as in Fig. 1). Generally the
attribute year of birth is less informative than the at-
tribute name. This is because the number of distinct
values of the former is typically lower than that of
the latter. In fact, it is more likely that two people are
born in the same year, than they have the same name.
Blast tries to assess the attribute information content
employing the Shannon entropy, and assigns a weight
to each blocking key proportional to the entropy of the
attribute from which it is derived. Thus, using Blast,
records that share values of their name attributes are
more likely indexed together than those sharing only
values of their year of birth attributes. This process is
completely unsupervised.

3.1. Loose schema information extraction

(Phase 1 in Fig. 4) In Blast, the loose schema information
extraction is performed through an entropy extraction criterion
applied in combination with the Loose attribute-Match Induction,
an attribute-match induction technique presented here. More-
over, we propose an optional LSH-based step for guaranteeing
scalability on large datasets, which is the main improvement
w.r.t. Attribute Clustering [7].
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Fig. 4. Blast logical overview.

3.1.1. Loose attribute-match induction (LMI)
Following the definitions of Section 2.2, Loose attribute-Match

Induction (LMI) is composed of these four components: the to-
kenization as value transformation function; the binary-presence
of a token as weight for the attribute representation model; the
Jaccard coefficient as similarity measure; and Algorithm 1 for
clustering, a variation of the one introduced as Attribute Clustering
(AC) in [7].

Basically, Algorithm 1 first collects the similarities of all pos-
sible attribute profile pairs of two profile collections, and their
maximum values of similarity (lines 2–8). The similarity function
(line 4) measures the Jaccard coefficient:

jaccard(Ti, Tj)=
Ti·Tj

|Ti|
2
+|Tj|

2
−Ti·Tj

.

where Ti, Tj are the vectors representing the attributes ai, aj re-
spectively (see Section 2.2).

Then, (lines 9–13) LMI marks as candidate match of an at-
tribute each attribute that is ‘‘nearly similar’’ to its most similar
attribute by means of a threshold α (e.g.: 0.9 · maxSimValue). If
an attribute ai has attribute aj among its candidates, then the
edge ⟨ai, aj⟩ is collected. Finally, the connected components of
the graph built with these edges, with cardinality greater than
one, represent the clusters (line 14). Optionally, a glue-cluster can
gather all the singleton components (i.e., components that have
cardinality equal to one), as in [7], to ensure the inclusion of all
the possible tokens (blocking keys).

Algorithm 1 Loose attribute-Match Induction (LMI)
Input: Attr. names: AP1 , AP2 ; Attr. profiles: T1, . . . ,Tz ; threshold: α

Output: Set of attribute names clusters: K
1: edges← {} sim← Map⟨K , V ⟩
2: Max← Map⟨K , V ⟩ // most similar attr. for each attr.
3: for each ai ∈ AP1 , aj ∈ AP2 do
4: sim.push(⟨⟨ai, aj⟩, similarity(Ti,Tj)⟩)
5: if sim.get(⟨ai, aj⟩) > Max.get(ai) then
6: Max.push(⟨ai, sim⟩)
7: if sim.get(⟨ai, aj⟩) > Max.get(aj) then
8: Max.push(⟨aj, sim⟩)

// matching-attr. candidates generation
9: for each ai ∈ AP1 , aj ∈ AP2 do

10: if sim.get(⟨ai, aj⟩) ≥ (α ·Max.get(ai)) then
11: edges← edges ∪ ⟨ai, aj⟩
12: if sim.get(⟨ai, aj⟩) ≥ (α ·Max.get(aj)) then
13: edges← edges ∪ ⟨aj, ai⟩
14: K ← getConnectedComponentsGrThan1(edges)
15: return K

LSH-based loose attribute-match induction
The computation of the similarity of all possible pairs of at-

tribute profiles has an overall time complexity of O(N1·N2), where
N1 and N2 are the cardinality of AP1 and AP2 , respectively. For
the dimensions commonly involved in the semi-structured data
of the Web (the data sources schema can commonly have even

thousands of attributes) this is infeasible. However, only a few
(or none) similar attributes are expected to be found similar for
each attribute; therefore, employing techniques able to group
the attributes approximately on the basis of their similarity can
significantly reduce the complexity of the attribute-match in-
ductions, without affecting the quality of the results. Hence, in
Blast we introduce a pre-processing step that can be optionally
employed with both LMI and AC.

LSH (Locality-Sensitive Hashing) allows to reduce the dimen-
sionality of a high-dimensional space, preserving the similarity
distances, reducing significantly the number of the attribute pro-
file comparisons. Employing the attribute representation model
of LMI5 and Jaccard similarity, MinHashing and banding [20] can
be adopted to avoid the quadratic complexity of comparing all
possible attribute pairs.

The set of attributes is represented as a matrix, where each
column is the vector Tj of the attribute aj (see Section 2.2).
Permuting the rows of that matrix, the minhash value of one
column is the element of that column that appears first in the
permuted order. So, applying a set of n hashing function to
permute the rows, each column is represented as a vector of n
minhash; this vector is called minhash signature. The probability
of yielding the same minhash value for two columns, permut-
ing their rows, is equal to the Jaccard similarity of them; thus,
MinHashing preserves the similarity transforming the matrix,
with the advantage of reducing the dimension of the vectors
representing the attributes. However, even for relatively small n,
computing the similarity of all possible minhash signature pairs
may be computationally expensive; therefore, the signatures are
divided into bands, and only signatures identical in at least one
band are considered to be candidate pairs and given as input to
the attribute-match induction algorithm (adapted to iterate only
through these candidate pairs — instead of all possible pairs).

Considering n minhash values as signature, b bands for the
banding indexing, and r = n/b rows for band, the probability
of two attributes being identical in at least one band is 1 −
(1 − sr )b. This function has a characteristic S-curve form, and
its inflection point represents the threshold of the similarity. The
threshold can be approximated to (1/b)1/r . For instance, choosing
b = 30 and r = 5, the attribute pairs that have a Jaccard simi-
larity greater than ∼0.5 are considered for the attribute-match
induction. (example Fig. 5).

Thus, LSH can be employed as pre-processing step, before ex-
ecuting Algorithm 1, for filtering out attribute pairs that are most
likely not similar, i.e., under a certain threshold.6 Furthermore,
minhash values can be employed for efficiently estimating the

5 The LMI attribute representation model can be used with Attribute
Clustering [7] as well.
6 For our experiments we found that a threshold of 0.4 works well for all

the dataset, but even lower thresholds can be employed; see Section 5.6 for
experiments about the LSH threshold.
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Jaccard similarity [20] of two attributes (line 4 in Algorithm 1).
Blast follows this approach and stores minhash values in an array,
which dominates the space complexity of Algorithm 1. The space
complexity of such an array is O(n·(N1 + N2)), where n is the
number of minhash values, and N1 and N2 are the cardinalities of
AP1 and AP2 , respectively; thus, Algorithm 1 has a O(n·(N1+N2))
space complexity.

Entropy extraction
To characterize each attribute cluster generated during the

attribute-match induction, Blast employs the Shannon entropy
of its attributes. The entropy of an attribute is defined as fol-
lows [21]:

Definition 3. Entropy. Let X be an attribute with an alphabet X
and consider some probability distribution p(x) of X . We define
the entropy H(X) by:

H(X) = −
∑
x∈X

p(x) log p(x)

Intuitively, entropy represents a measure of information con-
tent: the higher the entropy of an attribute, the more significant
is the observation of a particular value for that attribute. In other
words, if the attribute assumes predictable values (e.g., there are
only 2 equiprobable values), the observation of the same value
in two different entity profiles does not have a great relevance;
on the contrary, if the attribute has more unpredictable values
(e.g., the possible equiprobable values are 100), observing two
entity profiles that have the same value for that attribute can be
considered a more significant clue for entity resolution.

For example, considering the data source 1 of Fig. 1(a), the
probability for a tuple to have as attribute Name the value ‘‘Ellen’’,
i.e., p(‘‘Ellen’’), is 2/3 = 0.67, while the probability of having
‘‘John jr’’ as value is 1/3 = 0.33; thus, the entropy for the
attribute Name is:

H(Name) = −p(‘‘Ellen’’) · log p(‘‘Ellen’’)
− p(‘‘Johnjr’’) · log p(‘‘Johnjr’’) = 0.63

While, the entropy of the attribute Surname is 1.1, since all
the tuples have different values for that attribute:

H(Surname) = −p(‘‘Abraham’’) · log p(‘‘Abraham’’)
− p(‘‘Smith’’) · log p(‘‘Smith’’)

−p(‘‘Simons’’) · log p(‘‘Simons’’) = 1.1
in this case p(x) = 1/3 = 0.33.

In Blast the importance of a blocking key is proportional to
the entropy of the attribute from which it is derived. This is
obtained weighting the blocking graph according to the entropies
(shown in Section 3.3.1). To do so, an entropy value for each group
of attributes is derived by computing the aggregate entropy. The
aggregate entropy of a group of attributes Ck is defined as:

H̄(Ck) =
1
|Ck|
·

∑
Aj∈Ck

H(Aj) (1)

When a schema-agnostic blocking (e.g. Token Blocking) is ap-
plied in combination with attribute-match induction, each block-
ing key bi is uniquely associated with a cluster Ck, bi ↦→ Ck. For
instance, considering the example of Fig. 1(b), the token ‘‘Abram’’,
disambiguated with attribute-match induction, can represent ei-
ther the blocking key ‘‘Abram_c1’’ associated with the cluster C1,
or the blocking key ‘‘Abram_c2’’ associated with the cluster C2;
where C1 is composed of the attributes Name of p1 and FullName
of p3, while C2 is composed of the attributes addr. of p2 and
Address of p4.

For meta-blocking, Blast employs h(Bj) the entropy associated
with a set of blocking keys Bj:

h(Bj) =
1
|Bj|
·

∑
bi∈Bj

h(bi) (2)

where h(bi) = H̄(Ck) is the entropy associated to a blocking key
bi ↦→ Ck.

3.2. Loosely schema-aware blocking

(Phase 2 in Fig. 4) In Blast we employ Token Blocking, as
in [7]. Other blocking techniques (e.g., employing q-grams instead
of tokens, as in [22]) can be adapted to this scope as well, but
comparing them is out of the scope of this paper. For sake of
presentation, we call Loose Schema Blocking the combination of
Loose attribute-Match Induction and Token Blocking. The results
is that each token (i.e., blocking key) can now be disambiguated
according to the cluster of the attribute in which it appears,
while in classical Token Blocking each token represents a unique
blocking key. The example in Fig. 2 gives an intuition of the
benefits of this approach. Disambiguating the token ‘‘Abram’’
according to the attribute in which it appears avoids to index
together some non-matching profiles. This affects the blocking
graph weighting, and, at the end of the meta-blocking allows us
to avoid one superfluous comparison.

3.3. Loosely schema-aware meta-blocking

(Phase 3 in Fig. 4) Blast introduces a novel node-centric meta-
blocking technique designed to exploit loose schema information.

Papadakis et al. [12] demonstrated that node-centric blocking-
graph pruning criteria (i.e., WNP and CNP) outperforms the global
ones (i.e., WEP and CEP), and that weight-based pruning criteria
outperform the cardinality-based ones in terms of recall, but at
the expense of precision. Loose schema information can be ex-
ploited to significantly enhance precision; for this reason, and
considering the aforementioned results achieved by [12], as a de-
sign choice, Blast employs a weight-based, node-centric pruning
criterion (i.e., WNP).

In the following the two steps of Blast meta-blocking are
described. In the first step, the blocking graph GB{VB, EB,WB} is
generated weighting the edges according to a weighting schema
designed to capture the relevance of the profiles co-occurrence
in the blocks, and to exploit the attribute entropies. The second
step consists in a novel pruning criterion.

3.3.1. Blocking graph weighting
Considering two entity profiles pu and pv , the contingency

table, describing their joint frequency distribution in a given block
collection, is shown in Table 1. The table describes how entity
profiles pu and pv co-occur in a block collection. For instance:
the cell n12 represents the number of blocks in which pu ap-
pears without pv (the absence is denoted with ‘‘¬’’); the cell n2+
represents the number of blocks in which pu is not present (in-
dependently of pv). These values are also called observed values.
As an example, the values in parentheses are values derived from
the block collection of Fig. 1(b) for the profiles p1 and p3.

Given this representation, Blast employs Pearson’s chi-squared
test (χ2) [23] to quantify the independence of pu and pv in blocks;
i.e., testing if the distribution of pv , given that pu is present in the
blocks (first row of the table), is the same as the distribution of pv ,
given that pu is not present (the second row in the table). In prac-
tice, the chi-squared test measures the divergence of observed
(nij) and expected (µij) sample counts (for i = 1, 2, j = i, 2).
The expected values are with reference to the null hypothesis,
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Fig. 5. The depicted curve represents the probability of two attributes to be considered ‘‘similar’’ (y-axis) in function of their actual similarity (x-axis), when LSH is
employed (with the parameters r=5 and b=30).

Table 1
Contingency table for pu , pv . In parentheses an example derived from blocks in
Fig. 1(b)

pv (p3) ¬pv (¬p3)

pu (p1) n11 (4) n12 (2) n1+ (6)
¬pu (¬p3) n21 (3) n22 (3) n2+ (6)

n+1 (7) n+2 (5) n++ (12)

i.e., assuming that pu and pv appear independently in the blocks.
Thus, the expected value for each cell of the contingency table is:
µij = (ni+ · n+j)/n++.

Hence, the weight wuv associated to the edge between the
nodes representing the entity profiles pu and pv is computed as
follows:

wuv = χ2
uv · h(Buv)

=

∑
i∈{1,2}

∑
j∈{1,2}

(nij − µij)2

µij
· h(Buv)

(3)

Notice that Blast uses the test statistic as a measure that
helps to highlight particular profile pairs (pu, pv) that are highly
associated in the block collection, and not to accept or refuse a
null hypothesis. The correcting entropy value just weight the im-
portance of the blocks in which a co-occurrence appear, since not
all the blocks are equally important (as discussed in Section 3.1.1).

3.3.2. Graph pruning
Selecting the pruning threshold is a critical task. We identify

a fundamental characteristic that a threshold selection method,
in WNP, must present: the independence of the local number of
adjacent edges, to avoid the sensitivity to the number of low-
weighted edges in the blocking graph. In fact, this issue arises
when employing threshold selection functions that depend on
the number of edges, such as the average of the weights [12]. To
illustrate this phenomenon, consider again the example in Fig. 6.
Fig. 6(b) shows Gp1 , the node-centric view of the GB for the profile
p1.

If the profile collection (as in Fig. 1(a)) is composed only of
the profile set {p1, p2, p3, p4}, the resulting graph Gp1 has only
4 nodes and 3 edges. In this scenario the average of the edge
weights (the local pruning-threshold) is slightly greater than 2.
Thus, only the edge between p1 and p3 is retained in the pruning
phase. But, if the two entity profiles in Fig. 6(a) are added to the
profile collection, then two nodes and two edges are added to
Gp1 . This influences the threshold that became 1.8. Consequently,
the edge between p1 and p4 is retained in the pruning phase.
Therefore, the comparison of p1 and p4 depends on the presence
or absence of p5 and p6 in the profile collection, even though the
similarity between those two profiles does not depend on p5 and
p6.

In Blast we introduce a weight threshold selection schema inde-
pendent of the number of edges in the blocking graph.

Local Threshold Selection. In the node-centric view of the
blocking graph, the edge with the highest weight represents the
upper bound of similarity for the combination of the underlying
blocking technique and weighting function; so, we propose to
select a threshold independent of the number of adjacent edges
by considering a fraction of this upper bound:

θi =
M
c

(4)

where M is the local maximum weight, and c an arbitrary con-
stant. A value for c that has shown to be efficacious with real
dataset is c=2; a higher value for c can achieve higher recall, but
at the expense of precision.

Having determined the local threshold for each node, the last
step to perform is the retention of the edges. Though, in node
centric pruning, each edge eij between two nodes pi and pj is
related to two thresholds: θi and θ j (Fig. 7(a)); where θi and θj
are the threshold associated to pi and pj, respectively. Hence, as
depicted in Fig. 7(b), each edge eij has a weight that can be: (i)
lower than both θi and θj, (ii) higher than both θi and θj, (iii) lower
than θi and higher than θj, or (iv) higher than θi and lower than
θj. Cases (i) and (ii) are not ambiguous, therefore eij is discarded
in the first case, and retained in the second one. But, cases (iii)
and (iv) are ambiguous.

Existing meta-blocking papers [12] propose two different ap-
proaches to solve this ambiguity: redefined WNP retains eij if its
weight is higher than at least one of the two thresholds (i.e., a
logical disjunction, so we cal this method WNPOR), while recipro-
cal WNP retains the edge if it is greater than both the threshold
(i.e., a logical conjunction, so we cal this method WNPAND). Here
in Blast we choose to employ a unique general threshold, equals
to:

θij =

√
θi + θj

d
(5)

where d is a constant; for d = 2 the resulting threshold θij is equal
to the mean of the two involved local threshold, and has shown
to perform well with real datasets.

The experimental Section 5.3 shows how the parameters c
and d influence the performances of Blast and in particular, the
tradeoff of precision and recall for an ER task.

4. Distributed meta-blocking

We now introduce basic concepts of MapReduce-like systems
and then describe what is needed to parallelize Blast for taking
full advantage out of parallel and distributed computation.
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Fig. 6. (a) Two additional profiles for the collection in Fig. 1; (b) the node-centric representation of the blocking graph for p1 .

Fig. 7. Weight threshold. A directed edge from pi to pj indicates that the weight of the edge eij is higher than θi; a directed edge from pj to pi indicates that the
weight of the edge eij is higher than θj .

4.1. Mapreduce-like systems

In MapReduce-like Systems, programs are written in func-
tional style and automatically executed in parallel on a cluster
of machines. These systems also provide automatic mechanisms
for load balancing and to recover from machine failures with-
out recomputing the whole program by leveraging on the func-
tional programming abstraction (e.g., lazy evaluation in Apache
Spark [24]). In the following, we present the main functions em-
ployed to formalize MapReduce-like algorithms in this paper with
a concise and Spark-like syntax. These functions are defined w.r.t.
Resilient Distributed Dataset (RDD [24]), which are the basic data
structure in Apache Spark. In a nutshell, an RDD is a distributed
and resilient collection of objects (e.g.: integers, strings, etc.).

Basic functions for mapreduce-like algorithms
• map (map in MapReduce [25]) applies a given function to all

elements of the RDD returning a new RDD.
• mapPartitions: applies a given function to each RDD parti-

tion returning a new RDD.
• reduceByKey (reduce in MapReduce [25]) reduces the ele-

ments for each key of an RDD using a specified commutative
and associative binary function.
• groupByKey: groups the values for each key in the RDD into a

single collection.
• join: performs a hash join between two RDDs.
• broadcast: broadcasts a read-only variable to each node in

the cluster (which cache it).

We employ this set of functions for the sake of presentation
of our algorithms for MapReduce-like systems (Section 4.2). Yet,
the algorithms discussed in this paper employing such functions
are general enough to run on any MapReduce-like systems.

In MapReduce-like systems implementations, functions like
join and groupByKey are notoriously expensive, due to the so-
called shuffling of data across the network [26]. In fact, they
involve redistribution of the data across partitions with the con-
sequent overheads: data serialization/deserialization, transmis-
sion of data across the network, disk I/O operations. For instance,
join implies that all the records that have the same key are sent
to the same node. Whereas, map and mapPartitions are usually
fast to compute, because data is locally processed in memory, and
no shuffling across the network is required [26].

4.2. Blast on mapreduce-like systems

4.2.1. Distributed blocks generation
For the loose information extraction and loosely schema-aware

blocking (Phases 1 and 2 in Fig. 4), adapting the proposed solution
of Section 3 to the MapReduce paradigm is straightforward. It
only requires an underlying MapReduce-based LSH algorithm
(such as [27]). Then, adapting Token Blocking to the MapRe-
duce paradigm is straightforward as well (it essentially builds an
inverted index).

The main challenge for the parallelization of Blast is related to
the graph-based meta-blocking step. In fact, the blocking-graph,
defined in Section 2, is an abstract model useful to formalize
and devise meta-blocking methods. However, materializing and
processing the whole blocking-graph may be challenging in the
context of big data due to the size of such a graph. For this reason,
algorithms for processing the blocking-graph have been proposed
to scale meta-blocking to large datasets on MapReduce-like sys-
tems [13]. Their basic idea is to distribute the blocking-graph
processing on multiple machines, trading a fast execution for high
resource occupation.
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Algorithm 2 Repartition Meta-blocking [13].
Input: P , the profile collection
Output: C , the list of retained comparisons
1: PK

← ∅

2: C ← {} // retained comparisons
3: map ⟨profile⟩ ∈ P
4: for each k ∈ getKeys(profile) do
5: PK

← PK
∪ ⟨key, profile⟩

6: P J
← PK join PK on key // self-join

7: PG
← groupByKey (P J )

8: map ⟨profileNeighborhood⟩ ∈ PG

9: Cp ← prune(profileNeighborhood)
10: C .append(Cp)

In the following, firstly we revise the state-of-the-art blocking-
graph processing algorithm, i.e., repartition meta-blocking,7 dis-
cussing its limitations; then, we present our novel algorithm
called broadcast meta-blocking, which overcome these limitations.

4.2.2. Distributed blocking-graph processing

Repartition meta-blocking — At the core of repartition meta-
blocking [13] there is a full materialization of the blocking graph.

Algorithm 2 describes the repartition meta-blocking with pseu-
docode. Firstly, for each profile and for each of its blocking key, a
pair ⟨key, profile⟩ is generated (Lines 3–5). The result can be seen
as a table PK with two columns: key and profile. Then, a self-join
on PK (Line 6) and a group by profile (Lines 7) are performed. In
practice, this corresponds to a graph materialization, since each
node is associated with a copy of its local neighborhood. As a
matter of fact, each element of PG (Line 7) is a set of pairs ⟨pi, pj⟩,
where pi is fixed and pj is a profile sharing at least one blocking
key with pi.

Finally, for each profile pi and its neighborhood (Lines 8–10),
a pruning function computes a local threshold θi and retains only
the edges with a weight higher than θi (Lines 9).8

Optimization note — When implementing repartition meta-
blocking, for alleviating the network communication bottleneck,
blocks and profiles are represented by their ids, as proposed
in [13]. This means that, for Algorithm 2, the pair ⟨key, profile⟩
(in Line 5) is a pair of identifiers: the first id represents the key
(i.e., the block), the second id represents the entity profile.

Example 1. An example of the execution steps of repartition
meta-blocking is shown in Fig. 8. Five profiles are grouped in three
partitions: {p1}, {p2; p3} and {p4; p5}. Each partition is assigned
to a worker (i.e., a physical computational node) that computes
the ⟨key, profile⟩ pairs (Step 1). The resulting set of pairs PK is
then employed for a self join in order to yield the bag of all the
comparison pairs ⟨pi, pj⟩; this step (Step 2) requires a shuffling
of the data (PK ) through the network (note that only the ids of
the profiles are sent around the network). The comparison pairs
are assigned to a worker according to their keys, so the group by
operator partitions them to materialize the neighborhoods within
each worker (Step 3). Thus, in parallel, each neighborhood can be
processed to generate the final restructured block collection (Step
4).

7 In [13] this algorithm is called entity-based parallel meta-blocking (an
example is shown in Figure 14 of [13]) and it is the state-of-the-art (i.e., fastest
and efficient) algorithm for performing node-centric pruning on the blocking
graph; we coined the term repartition meta-blocking for the analogy with the
repartition join algorithm [13,28].
8 Some pruning functions requires as input both the local threshold of the

current node pi and the local threshold of its neighbors; in this case, (Lines 8–10)
are executed two times: first, for computing all the thresholds (which are then
broadcasted); then, for the actual pruning.

Algorithm 3 Broadcast Meta-blocking .
Input: P , the profile collection
Output: C , the list of retained comparisons
1: B← buildBlocks(P)
2: IB ← buildBlockIndex(B)
3: C ← {} // retained comparisons
4: broadcast(IB)
5: map partition ⟨part⟩ ∈ P
6: IP ← buildProfileBlockIndex(IB)
7: for each profile ∈ part do
8: Bids ← IP [profile.id]
9: profileNeighborhood←buildLocalGraph(Bids, IB)

10: Cp ← prune(profileNeighborhood)
11: C .append(Cp)

The bottleneck of repartition meta-blocking is the join (Line
6 in Algorithm 2). In fact, Efthymiou et al. [13] describe it as a
standard repartition join [28] (a.k.a. reduce-side join), a notoriously
expensive operator for MapReduce-like systems.9 A workaround
for this issue could be the employment of broadcast join [28], a
join operator for MapReduce-like systems that is very efficient if
one of the join tables can fit in main memory. Unfortunately, PK

(Line 6 in Algorithm 2) typically cannot fit in memory with large
dataset (e.g., those employed in our experiments in Section 5).
Thus, broadcast join cannot be employed in Algorithm 2.

Broadcast meta-blocking — To avoid the repartition join bottle-
neck, we propose a novel algorithm for parallel meta-blocking
inspired by the broadcast join. The key idea of our algorithm is
the following: instead of materializing the whole blocking graph,
only a portion of it is materialized in parallel. This is possible
by partitioning the nodes of the graph and sending in broadcast
(i.e., to each partition) all the information needed to materialize
the neighborhood of each node one at a time. Once the neighbor-
hood of a node is materialized, the pruning functions that can be
applied are the same employed in repartition meta-blocking [13],
and (non-parallel) meta-blocking [8,12].

The pseudocode of broadcast meta-blocking is shown in Algo-
rithm 3 and described in the following. Given the profile col-
lection P the block index IB is generated (Lines 1–2): it is an
inverted index listing the profile ids of each block (blocks are rep-
resented through ids as well). When executing Blast, the functions
buildBlocks and buildBlockIndex also extract the loose schema
information — i.e., they basically perform what is described in
Section 4.2.1. Then, IB is broadcasted to all workers (Line 4), in
order to make it available to them. On each partition, an index IP
is built (Lines 5–6): for each profile it lists the block identifiers
in which it appears. Then, for each partition and for each profile,
by using the IP and IB indexes, a profile’s neighborhood at a time
is built locally (Lines 7–9): for each block id contained in IP it is
possible to obtain from IB the list of profile ids (the neighbors).
Finally, it performs the pruning (Lines 10–11).10

Note that the prune function employed in Algorithm 2
(Line 9) and Algorithm 3 (Line 10) takes as input a profile’s
neighborhood and can be any node-centric pruning function,
e.g., the one described in Section 3.3.

Example 2. An example of the execution steps of broadcast meta-
blocking is shown in Fig. 9. In Step 1 the profiles are partitioned
and assigned to the workers. Then, in Step 2, the inverted index of

9 We make explicit the join operator: Efthymiou et al. present their
algorithms in [13] by using a only map and reduce functions.
10 As for Algorithm 2, for some pruning functions, this last iteration has to be
performed twice: the first time for computing all the thresholds, the second for
the actual pruning.
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Fig. 8. Repartition meta-blocking example.

Fig. 9. Broadcast meta-blocking example.

blocks (the Block Index) is built — for the sake of the example, the
intermediate steps to build the inverted index are not depicted.
This step requires a shuffling of data though the network, but at
a significantly lower extent compared to that needed for the self-
join operation of repartition meta-blocking. Then, the Block Index
is broadcasted to all the workers that perform the last phase of
the processing (Step 2). Finally, in Step 3, each worker processes
a partition of the profile set: it materializes a neighborhood at
a time by exploiting the local instance of the Block Index, and
performs pruning to yield the final restructured block collection.

5. Evaluation

The experimental evaluation aims to answer the following
questions:

Q1: What is the performance of Blast in terms of precision, recall,
and execution time compared to the state-of-the-art [12]?
(Section 5.1)

Q2: What is the contribution of each Blast component to the
overall performance (e.g., how the performance changes by
employing the aggregate entropy)? (Section 5.2)

Q3: What are good parameters c and d for the pruning thresh-
old of Blast (see Section 3.3.2) for a good recall/precision
tradeoff? (Section 5.3)

Q4: How efficient is broadcast meta-blocking, compared to repar-
tition meta-blocking [13]? (Section 5.4)

Q5: How does Blast (with broadcast meta-blocking) scale when
varying the number of machines available for the ER process-
ing? (Section 5.5)

Q6: How does the LSH-based step affects the Blast processing?
(Section 5.6)

Q7: What is the performance of Blast w.r.t. traditional meta-
blocking when no schema-alignment is required (i.e., with
a single data source with known schema containing dupli-
cates)? (Section 5.7)
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Table 2
Dataset characteristics: number of entity profiles, number of attribute names,
and number of existing matches. An exact schema alignment can be achieved
only on starred ‘‘(*)’’ datasets.

Size |P1| − |P2| |A1| − |A2| |DP |

articles1 (*) small 2.6k–2.3k 4–4 2.2k
articles2 (*) small 2.5k–61k 4–4 2.3k
products (*) small 1.1k–1.1k 4–4 1.1k
movies small 28k–23k 4–7 23k
articles3 (*) large 1.8M–2.5M 7–7 0.6M
dbpedia large 1.2M–2.2M 30k–50k 0.9M
freebase large 4.2M–3.7M 37k–11k 1.5M

Q8: What is the performance of Blast w.r.t. traditional meta-
blocking in a multi-data source context (i.e., when the number
of data sources is greater than 2)? (Section 5.8)

Experimental setup

Hardware and Software — All the experiments are performed
on a ten-node cluster; each node has two Intel Xeon E5-2670v2
2.50 GHz (20 cores per node) and 128 GB of RAM, running
Ubuntu 14.04. All the software is implemented in Scala 2.11.8 and
available at [29]. To assess the performance of the state-of-the-
art meta-blocking methods we re-implemented all of them for
running on Apache Spark as well. We employ Apache Spark 2.1.0,
running 3 executors on each node, reserving 30 GB of memory
for the master node. We set the default parallelism to twice the
number of cores as suggested by best practice.11

Datasets — Table 2 lists the 7 real-world datasets employed in
our experiments. They have different characteristics and are from
a variety of domains. The small datasets (i.e., articles1, arti-
cles2, products, and movies) are used only when evaluating
the performance in terms of recall and precision, since their time
performance on distributed setting is not significant. (Table 4
reports the definition of precision and recall from Section 2.)

All the datasets match two different data sources for which
the ground truth of the real matches is known. From [30]: ar-
ticles1 matches scientific articles extracted from dblp.org and
dl.acm.org; articles2 matches scientific articles extracted from
dblp.org and scholar.google.com. products matches products
extracted from Abt.com and Buy.com. From [7]: movies matches
movies extracted from imdb.com and dbpedia.org; dbpedia
matches entity profiles from two different snapshots of DBpedia
(2007 and 2009).12 From [31]: articles3 matches scientific
articles extracted from Citeseer and DBLP. Finally, freebase is
derived from the Billion Triple Challenge 2012 Dataset [32]: it
is composed by two datasets, one contains the data of DBpedia
3.7, the other one the data of Freebase; we cleaned these two
datasets keeping only the information in English, removing other
languages; the ground truth is represented by the owl:sameAs
relationships between them.

Methods Configurations and Results Analysis — For each
dataset, the initial block collection is extracted through a redun-
dant blocking technique (either Token Blocking or Loose Schema
Blocking). Then, the block collection is processed with Block
Purging and Block Filtering [12], which aim to remove/shrink
the largest blocks in the collection. Block Purging discards all
the blocks that contain more than half of the entity profiles in
the collection, corresponding to highly frequent blocking keys
(e.g. stop-words). Block Filtering removes each profile pi from

11 https://spark.apache.org/docs/latest/tuning.html.
12 Only 25% of the name–value pairs are shared among the two snapshots,
due to the constant changes in DBpedia, therefore the ER is not trivial.

the largest 20% blocks in which it appears.13 The time required
by both Block Purging and Block Filtering is negligible compared
to the meta-blocking phase, thus not listed in the experimental
results.

The schema-agnostic meta-blocking methods can be executed
on blocks generated with both Token Blocking and with Loose
Schema Blocking, while Blast is compatible with the latter only,
since it exploits the loose schema information.

For the schema-agnostic meta-blocking methods, we report
the average values of recall, precision, F1-score14 and time ob-
tained by executing each method in combination with each of
the five weighting schemas proposed in [7].15 We also report that
no traditional weighting schema and pruning strategy combina-
tion performs better than the other on the considered datasets,
confirming the results of [7].

Finally, for the time measurement, we report the values ob-
tained by averaging the times recorded for five runs. Table 3
summarizes the acronyms used in this Section.

5.1. Blast vs. state-of-the-art meta-blocking

Table 3 summarizes the acronyms and configurations em-
ployed in this experiment. WNP and CNP is applied on block
collections generated both with Token Blocking (TB) and Loose
Schema Blocking (LSB), and employing both redefined (WNPOR/
CNPOR) and reciprocal (WNPAND/CNPAND) approaches (see Sec-
tion 3.3.2).

Fig. 11 shows the result of the execution of Blast and tra-
ditional meta-blocking on all the datasets. Compared to WNP
approaches, Blast achieves significantly higher precision and ba-
sically the same level of recall on all the datasets. In particular
Blast always outperforms LSB+WNPOR/AND, demonstrating that the
Blast weight-based pruning is actually more effective than the
traditional ones.

Compared to TB+CNPOR/AND, Blast achieves higher precision on
all the datasets, with the exception of articles2 and free-
base, where CNPAND has a higher precision (Figs. 11(i) and
11(n)). Notice though that on articles2 and on freebase Blast
achieves a recall significantly higher (Figs. 11(b) and 11(g)). On
all the other datasets, the recall of Blast is almost the same of
TB+CNPOR/AND (Fig. 11(a–g)), or slightly higher (Figs. 11(b) and
11(g)). Similarly, Blast outperforms LSB+CNPOR/AND in terms of
precision on all the datasets but articles2 and freebase
(Figs. 11(i) and 11(n)). Yet, on these datasets Blast yields a higher
recall (Figs. 11(b) and 11(g)).

We also considered the overall execution time of the methods.
For the comparison, we employed our Spark implementation of
them, employing broadcast-meta-blocking as core blocking-graph
processing algorithm, running on a single node (for scalability and
performance on multiple nodes see Section 5.5). In such a config-
uration, for the small datasets the results are not reported: the
overhead introduced by Spark in each execution does not allow
to properly record the actual time efficiency of such configuration
when the size of the data is small.16 The results are shown in

13 This heuristic has shown to not affect recall in practice, while lighting the
blocking-graph handling [12].
14 Hand et al. [33] have recently discussed how F1-score may be an unreliable
measure for comparing different ER algorithms. We report F1-score for the sake
of completeness – it has been used in many related works [5,34,35] – yet we
draw conclusions on the basis of precision and recall only.
15 Among the weighting schemas proposed in [7], we did not identify an
overall best performer and an overall worst performer, confirming the results
reported in [13], for this reason we report the average precision, recall, F1-score
and execution time.
16 In [11] the time for these datasets are reported for the Java implementation
and the results are analogous.

https://spark.apache.org/docs/latest/tuning.html
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Table 3
Acronyms and configurations.
Blocking

TB Token Blocking [7] (see Section 1)
LSB Loose-Schema Blocking (see Section 3.2)

Meta-blocking

WNP Weight Node Pruning [12] (see Section 2.3)
CNP Cardinality Node Pruning [12] (see Section 2.3)
WNPOR(CNPOR) The redefined WNP (CNP) approach [12] (see Section 3.3.1).

An edge is not pruned if it weight is greater than any of its adjacent node’s
local thresholds (OR condition)

WNPAND(CNPAND) The reciprocal WNP (CNP) approach [12] (see Section 3.3.1).
An edge is not pruned if it weight is greater than both of its adjacent node’s
local thresholds (AND condition)

Blast

Blastχ2 Blast approach, without employing the aggregate entropy to compute the
weights of the edges (see Section 3.3.1).

BlastH Blast approach, using the weighting schema proposed in [12] instead of χ2 to
weight the edges (see Section 3.3.1). The entropy is used.
The results reported are the average of all the weighting schema.

BlastH
χ2 (or simply Blast) Blast approach (i.e., with χ2 and aggregate entropy, see Section 3).

Table 4
Metrics.

∥B∥ Number of comparisons entailed by a block collection B

|DP
| Number of duplicates (matches) in a profile collection P

|DB
| Number of duplicates (matches) indexed in at least one block b ∈ B

recall(B) |DB
|/|DP

|

precision(B) |DB
|/∥B∥

Fig. 10. Execution time of the different methods applied on blocks obtained with the Token Blocking (TB+WNPADN/OR/CNPADN/OR) and with the Loose Schema Blocking
(LSB+WNPADN/OR/CNPADN/OR). The execution time is referred to the meta-blocking, and it was taken on a single node on the biggest datasets.

Fig. 10. Blast is always significantly faster than CNPOR/AND on all
the considered datasets and all the configurations (up to 3.8× on
dbpedia in Fig. 10(b)). It is also faster than TB+WNPOR/AND on
dbpedia (2.8× in Fig. 10(b)) and freebase (1.6× in Fig. 10(c));
while, on articles3 is slightly slower (Fig. 10(a)). Compared
to LSB+WNPOR/AND, Blast has almost the same execution time
on dbpedia (Fig. 10(b)) and freebase (Fig. 10(c)); while on
articles3 is slightly slower (Fig. 10(a)).

Overall, we conclude that Blast yields the same recall and
a significantly higher precision of the best performing schema-
agnostic meta-blocking methods [12], on each dataset.17 The
only exception is LSB+CNPOR/AND, which achieves higher recall

17 The differences between Blast and WNP/CNP are statistically significant
according to Student’s T-Test (with p-value < 0.05).

than Blast on two of the seven considered datasets (Fig. 11(i) and
Fig. 11(n)), but at the same time has lower recall (Fig. 11(b) and
Fig. 11(g)) and is always slower than Blast Fig. 10. Finally, we
also observe that Blast has time performance similar to the fastest
schema-agnostic method.

5.2. Blast components evaluation

In this experiment we evaluate the contribution provided by
each component characterizing Blast: the aggregate entropy and
the weighting function. The results are reported in Fig. 12.

We compare three different configurations of meta-blocking
performed on a block collection generated through Loose Schema
Blocking: Blastχ2 , BlastH

χ2 , BlastHχ2 , as described in Table 3.
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Fig. 11. Recall and precision achieved by the considered methods on all the datasets. Traditional meta-blocking (WNPADN/OR and CNPADN/OR) has been combined both
with Token Blocking (TB+WNPADN/OR/CNPADN/OR) and Loose Schema Blocking (LSB+WNPADN/OR/CNPADN/OR). Blast is based on Loose Schema Blocking for the extraction
of the loose schema information, thus it is not applicable on block collection generate with Token Blocking.

Aggregate entropy
The comparison of Blastχ2 and BlastH

χ2 allows us to assess the
contribution of the aggregate entropy. The result in Fig. 12(h–
n) shows that by employing the aggregate entropy precision

increases from 1.6 (Fig. 12(h)) to 3.7 times (Fig. 12(n)). At the
same time, recall is almost the same on all datasets (Fig. 12(a–g)).
On freebase, BlastH

χ2 even achieves both recall and precision
significantly higher than Blastχ2 (Figs. 12(g) and 12(n)).
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Fig. 12. Blast running: without considering the aggregate entropy (Blastχ2 ); in combination with traditional schema-agnostic weighting functions (BlastH); standard
configuration (BlastH

χ2 ).

We conclude that aggregate entropy actually enhances meta-
blocking.

Chi-squared weighting
Blast employs a weighting function derived from the chi-

squared (χ2) statistical test designed to quantify the significance
of the co-occurrences (see Section 3.3). For assessing the per-
formance of this weighting function, BlastH is compared with
BlastH

χ2 . The result is shown in Fig. 12. Recall is almost the same
for all the datasets for BlastH and BlastH

χ2 (Fig. 12(a–g)), while
BlastH

χ2 achieves a considerably higher precision (Fig. 12(h–n)),
e.g. on dbpedia (Fig. 12(m)) precision has a 16× improvement.
The only exceptions are articles2 and freebase: on the for-
mer, BlastH

χ2 achieves almost the same recall and precision yielded
by BlastH (Fig. 12(b) and Fig. 12(i)); on the latter, BlastH has a
4.6% higher recall, yet BlastH

χ2 yields a precision more than twice
higher than BlastH (Fig. 12(n)).

We conclude that our weighting function actually enhances
meta-blocking performance.

5.3. Blast sensitivity to parameters

From Section 3.3.2, to perform the graph pruning, Blast com-
putes a local threshold θi for every profile pi. This local threshold
is computed as θi =

M
c (from Eq. (4)), where M is the local

maximum weight, and c is an arbitrary constant. Then, for retain-
ing an edge between two profiles pi, pj, a unique threshold θij is

computed as θij =

√
(θ2i +θ2j )

d (from Eq. (5)), where d is an arbitrary
constant.

The constants c and d can be reduced to a unique constant
t = c · d, as shown below:

θij =
1
c
·

√
(
θi

d
)
2

+ (
θj

d
)
2

=
1
c
·
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i

d2
+
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j
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=

1
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·
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1
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· (θ2
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=
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·

√
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i + θ2
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1
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·

√
θ2
i + θ2

j (6)

We perform a preliminary experiment by varying t in the
range (2, 10) in order to choose the best values for c and d. Notice
that it is not possible to set t ≤ 1, otherwise θij > max(θi, θj), so
every edge will be pruned. Furthermore, we limit t ≥ 2 because,
in practice, lower values of t yields very poor recall for many of
the analyzed datasets.

The results are shown in Fig. 13. In general, we observe that
the recall increases as t increases, but at the expense of precision.
As a trade-off for precision and recall, for all the experiments in
this paper, we employ t = 4 (setting c = 2 and d = 2). As a
matter of fact, on all the datasets, increasing t above 4 the loss of
precision is traded for a little gain in the recall.

5.4. Broadcast vs. repartition meta-blocking

The goal of this experiment is to compare the efficiency
of broadcast meta-blocking (Algorithm 2) and repartition meta-
blocking (Algorithm 3). Both the algorithms can be employed as
core graph-processing algorithms for any meta-blocking method.
Thus, we evaluate them in combination with WNP and CNP, in
order to analyze how they perform on both family of meta-
blocking, i.e., those based on weight-threshold, and those based
on cardinality-threshold (see Section 2.3). To minimize additional
overhead, we run them in combination with the computationally
cheapest weighting function, i.e., block co-occurrence frequency
(we record analogous trends with other weighting functions). The
experiment was performed on 10 nodes. We consider only the
large datasets since the overhead introduced by Spark does not
pay off on the small ones on multiple nodes. Notice that both
algorithms perform the same logical operation, that is the final
recall and precision are the same on all the datasets, hence not
reported here.

The results are reported in Fig. 14: broadcast meta-blocking
is faster than repartition meta-blocking from 4.9 to 12.7 times
for WNP, and from 7.7 to 10.1 times for CNP. To analyze the
scalability of the algorithms, we report in Fig. 15 their execution
times in function of the number of nodes (from 1 to 10) on
freebase (the largest dataset). In our setting, repartition meta-
blocking is not able to run with less than 7 nodes; whereas
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Fig. 13. Blast sensitivity: these charts shown the variations of precision, recall, and F1 score in function of the t parameter.

Fig. 14. Repartition vs. Broadcast meta-blocking. For each dataset we report two different strategies for the prune functions, i.e., the weight- and cardinality-based
pruning. This times was taken on 10 nodes.

broadcast meta-blocking on a single node is 3 to 4 times faster
than the execution time of the repartition meta-blocking on 10
nodes.

We conclude that the broadcast meta-blocking is always faster
than the repartition meta-blocking.

5.5. Parallel-blast scalability

Finally, we assess the scalability of parallel Blast by varying
the number of nodes in the cluster (1, 3, 5, 7 and 10 nodes).
For this experiment we employ freebase, which is the heavi-
est dataset to process due to the huge number of comparisons
yielded by the blocking phase (2.23× 1013 comparisons), and to
its large number of attributes (47,945 distinct attributes).

Fig. 17 shows the scalability of each blocking step, i.e.: Loose
Schema Blocking (LSB, which is composed of Loose attribute-
Match Induction in combination of Token Blocking), and Loose
Schema Meta-Blocking (LS-MB). Fig. 16 shows the speedup of
each blocking step, which is sub-linear to the number of nodes in
the cluster (i.e. 10x nodes, the overall speedup do not reach 5).
For each step, we observe at least a 50% reduction of execution
time from 1 to 3 nodes. Then, the execution times continuously
decrease until reaching an overall speedup on 10 nodes of 4.2×.

The time and speedup reported so far only consider the block-
ing and meta-blocking phase of an ER process. In practice, all
the comparisons generated through any blocking process have to
be compared by means of an Entity Resolution Algorithm, which
is a binary function that takes as input two profiles and de-
cides whether or not they are matching [5,36]. Such a function

is typically expensive, e.g., involving string similarity computa-
tions, calls to external resources or even human intervention
(i.e., crowdsourcing). Thus, the more the employed function is
expensive, the more useful a good blocking (and meta-blocking)
method is; in other words: the resources saved avoiding super-
fluous comparisons are proportional to the complexity of the
Entity Resolution Algorithm. Hence, we now compare Blast and
WNP using a naïve (i.e., cheap) Entity Resolution Algorithm for
showing that Blast significantly reduces the overall execution
time of a complete ER process. We employ as Entity Resolution
Algorithm the computation of the Jaccard Similarity of the two
profiles involved in each comparison.18

Fig. 18 shows the execution time of Blast and WNP in combi-
nation with the naïve Entity Resolution Algorithm19 and by varying
the number of nodes. We observe that the meta-blocking phase
of Blast is slower than standard schema-agnostic WNP. This is
not surprising, since Blast performs an additional step compared
to WNP (i.e., Loose attribute-Match Induction). Yet, the overall
ER process employing Blast is significantly faster that employing
WNP, since it retains much fewer comparisons (3.80 ·108 of Blast
vs. 2.17 · 1010 of WNP). Please, recall that Blast and WNP, on
freebase, achieve the same recall (Fig. 11(g)).

18 In a real-world scenario, a threshold would be required to discriminate
between matching and non-matching pairs.
19 The average comparison time on freebase is 0.05 ms.
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Fig. 15. Scalability comparison: repartition vs. broadcast meta-blocking on freebase.

Fig. 16. Speedup of Blast on freebase.

Fig. 17. Execution time of Blast on freebase.

5.6. LSH-based loose schema blocking

This section aims at assessing the benefit of the LSH-based
step. To do that, consider the worst case scenario: when Loose
Schema Blocking (see Section 3.2) does not identify any similar
attribute, all the attributes are grouped in a unique all-encom-
passing cluster (the glue cluster [7]). In this scenario, the blocks

generated combining Loose Schema Blocking are identical to those
generated with Token Blocking alone. On the other hand, if Loose
Schema Blocking correctly groups some similar attributes, sepa-
rating them from the glue cluster, the precision of the produced
block collection increases, while recall remains almost the same.

Ideally, the more the similar attributes are correctly grouped,
the higher the precision of the generated blocks is, without affect-
ing the recall. Hence, to demonstrate the advantage of LSH-based
Loose Schema Blocking, we perform a set of experiments ‘‘dis-
abling’’ the glue cluster and varying the threshold of LSH. This
means that, without the glue cluster, all the attributes that are not
indexed in a group of similar attributes are discarded, and so are
the tokens of their values. If significant tokens are not employed
as blocking key, the recall of the final blocks is negatively affected.
So, varying the threshold of LSH changes the group of similar
attributes. In fact, if two attributes are less similar20 than the
threshold, Loose Schema Blocking does not consider them as a
candidate pair, and they cannot be indexed in the same group.

Fig. 19 shows how LSH affects the final results of Blast com-
bined with Loose Schema Blocking in terms of recall on dbpedia
(other datasets yields analogous results). Table 5 reports the
execution times of the experiment. We consider the recall of
the block collection produced with Loose Schema Blocking only,
without considering the meta-blocking phase. Basically, up to a
threshold value of 0.35 (i.e., Jaccard similarity equals to 0.35), the
recall is not affected (recall = 99.99%), meaning that (almost21)
all the matching profile pairs are successfully indexed in the block
collection. The precision is not reported, but for the points where
recall = 99.99% is identical, i.e., it is not affected by the LSH
threshold. For a threshold greater than 0.35, on the contrary, the
techniques start failing to index some profile pairs, entailing a
degradation of the final result. In other words, for thresholds that
exclude too many attribute comparisons, Loose Schema Blocking
fails to recognize similar attributes and produces an incomplete
cluster of attributes. Nevertheless, even for a conservative thresh-
old (e.g. 0.10), the execution of Loose Schema Blocking, overall, is
under 2h (instead of ∼12h).

5.7. Dirty ER

Loose Schema Blocking is designed to identify similar attributes
among data sources that have different schemas (e.g. to identify
which attributes refers to person names in the example of Fig. 1).

20 Jaccard similarity, since we are employing min-hash.
21 Loose Schema Blocking (as any other blocking technique) may yield false
negative, i.e., pairs of profile that are not indexed in any block; for this reason
the recall is not 100%.
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Fig. 18. Execution time of the complete ER process on freebase, varying the number of execution nodes in the cluster. The whole ER process is composed of a
blocking phase, which generates candidate pairs that are compared through an Entity Resolution Algorithm. In (a), the blocking method employed is Token Blocking
in combination with WNP meta-blocking. In (b), the blocking method employed is Blast .

Fig. 19. Recall with different LSH configurations in combination with Loose Schema Blocking on dbpedia. In the legend number of rows and number of bands for
LSH are in parenthesis, and t is the estimated threshold..

Table 5
Loose Schema Blocking run time varying the LSH threshold. The leftmost column
reports the execution time of Loose Schema Blocking without employing LSH (i.e.,
computing the Jaccard similarity of all possible pair of attributes).

– LSH0.10 LSH0.22 LSH0.32 LSH0.41 LSH0.55 LSH0.64

12.5 h 1.9 h 1.5 h 1.3 h 1.2 h 0.9 h 0.7 h

There is a particular class of Entity Resolution problems, called
dirty ER, where a single data source with known schema is con-
sidered, as outlined in [12] (see Section 2.1.1). In this scenario,
there is inherently no need to perform loose attribute-match
induction (or schema-alignment), because there is only a single
source involved that has a unique schema. However, grouping
similar attributes (if any) and extracting aggregate entropy is
possible; thus, we modified Loose Schema Blocking to work with
dirty ER (see Section 2.1.1). For the meta-blocking phase, there is
no need for changes.

To evaluate the performance of Blast we compared it against
traditional meta-blocking techniques on 3 real-world benchmark
datasets [1]. Both Blast and traditional meta-blocking are applied
in combination with Loose Schema Blocking.22

22 Traditional meta-blocking in combination with Token Blocking has always
worse performances, thus we do not report here the results. The execution times
for these datasets are of the order of milliseconds and Loose Schema Blocking
does not significantly affect the total execution times.

Results
The characteristics of the datasets and the results are listed in

Table 6. Besides recall and precision, we also consider F1-score,
which is the harmonic means of the two. This helps us to discuss
the comparison of two methods that show significantly different
values of both recall and precision. Blast achieves higher precision
and F1-score than traditional WNP, and a slightly lower recall.

The only exception is on cora, where WNPOR achieves ∼8%
higher recall (though Blast has a ∼30% higher precision). Com-
pared to CNP, Blast outperforms CNPOR on cora and cddb, while
falls behind it on census. On census and cddb, CNPAND outper-
forms Blast, but in cora its recall is considerably low (46%).

Overall, for dirty ER, Blast can be an effective blocking tech-
nique when the priority is to achieve high precision, without giv-
ing up a high level of recall (e.g., to save computational resources
performing ER in a cloud-computing environment).

5.8. Multiple data sources

In this experiment we want to explore the multi-data source
scenario [18], i.e. when the number of input datasets is greater
than 2.

The datasets employed in this experiment have been col-
lected from the Magellan repository [31], in particular we con-
sider a collection of heterogeneous records gathered online from
IMDB.com, RottenTomatoes.com, TMDmoviez.com and Ama-
zon.com, all about movies. These datasets have been used for
evaluating ER algorithms in [5]. Considered singularly, none of
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Table 6
Dirty ER results.

Blast WNPOR WNPAND CNPOR CNPAND

recall(%) 74.7 78.3 68.3 84.4 78.7

precision(%) 8.90 8.02 11.5 8.8 14.2

F1 0.1590 0.1448 0.1965 0.1608 0.2361

1k profiles, Ground Truth: 300 matches

(5 attributes — 2 clusters with Loose Schema Blocking)

(a) census

Blast WNPOR WNPAND CNPOR CNPAND

recall(%) 82.1 90.3 81.2 66.9 46.2

precision(%) 84.0 53.8 69.4 65.7 82.4

F1 0.8302 0.6726 0.7377 0.6637 0.5917

1k profiles, Ground Truth: 17k matches

(12 attributes — 4 clusters with Loose Schema Blocking)

(b) cora

Blast WNPOR WNPAND CNPOR CNPAND

recall(%) 93.7 97.3 96.1 96.8 94.9

precision(%) 0.13 0.03 0.04 0.08 0.18

F1 0.0027 0.0005 0.0008 0.0015 0.0036

10k profiles, Ground Truth: 600 matches

(106 attributes — 16 clusters with Loose Schema Blocking)

(c) cddb

Table 7
Dataset characteristics: number of entity profiles, and number of attribute names.
On the right side, the number of duplicates between each dataset.

#profiles #attributes #duplicates

IMDB 6.4k 12 Amazon-TMD 760

Rotten 7.3k 16 Amazon-Rotten 5

Amazon 5.3k 6 Amazon-IMDB 2

TMD 10k 5 IMDB-Rotten 876

IMDB-TMD 53

TMD-Rotten 72

these datasets contains duplicates; thus, this ER problem can
be formalized as a Clean–Clean ER problem (a.k.a. Record Link-
age) [12,14] (see Clean–Clean ER in Section 2.1.1). Thus, Blast and
meta-blocking can be employed without any modification for
this experiment. Notice that if each dataset considered singularly
could contain duplicates, the overall problem can be reduced to
a Dirty ER problem (see Section 2.1.1) on a single dataset that is
the union of all the considered datasets [12].

The datasets characteristics are reported in Table 7. All the
considered datasets have different schemas [5]. The ground truth
has been generated using the Magellan framework [5], the num-
ber of identified duplicates between each dataset are reported in
Table 7.

Fig. 20 reports the achieved results. Blast obtains better re-
sults both in term of recall and precision w.r.t the standard
meta-blocking (Fig. 20(a-b)).

6. Related work

Blocking techniques have been commonly employed in En-
tity Resolution (ER) [5,14,37–43], and can be classified into two
broad categories: schema-based (Suffix Array [22], q-grams block-
ing [44], Canopy Clustering [45]), and schema-agnostic (Token
Blocking [7], Progressive ER [16,46–50], and Attribute-match in-
duction [7,9]).

Attribute-match induction — Among the schema-agnostic
techniques, Attribute Clustering (AC) [7] and TYPiMatch [9] try
to extract statistics to define efficient blocking keys. AC relies
on the comparison of all possible pairs of attribute profiles of
two datasets to find the pairs of those most similar; this is an
inefficient process, because the vast majority of comparisons are
superfluous. Our LSH-based preprocessing step aims to address
this specific issue. TYPiMatch tries to identify the latent subtypes
from generic attributes (e.g. description, info, etc.) frequent on
generic dataset on the Web, and uses this information to select
blocking keys; but it cannot efficiently scale to large datasets.

Block manipulation — In this paper, we tackled the problem
of meta-blocking, i.e., how to restructure (manipulate) an existing
blocking collection, for improving the quality of the overall ER
process. The state-of-the-art, unsupervised and schema-agnostic
meta-blocking has been presented in [12]. Blast was shown to
outperform them in Section 5. Supervised meta-blocking [51,52]
extends the blocking graph model by representing each edge
as a vector of schema-agnostic features (e.g. graph topological
measures), and treats the problem of identifying most promising
edge as a classification problem; hence, a training set of labeled
data (matching/non-matching pairs) is required. Blast exploits the
loose schema information and does not require any training set
(i.e., it is completely unsupervised).

Recently, in the context of multi data-source ER, Ranbaduge
et al. [18] have proposed a blocking manipulation method for
identifying entities whose profiles span among g data sources,
where g is a user bounded parameter. In order to do that, given
a block collection, the proposed method selects and combines
(manipulate) blocks that are the most promising for finding pro-
files of g data sources that match together. The user can also
specify a set F of data sources, and the final result is required to
have matches that involve that set F of data sources. In [18], this
task is called Multidatabase record linkage (MDRL). Formalizing
MDRL by employing the blocking graphmodel (Section 2.3): MDRL
is the task of identifying the hyperedges of the blocking graph
that span among g nodes that belong to g distinct sources, and
that have high weight (remember that the weight in the block-
ing graph corresponds to the matching likelihood). Hence, the
scope of MDRL is orthogonal to the scope of meta-blocking [12]
(and thus Blast), which tries to prune edges that correspond
to not-promising comparisons. Furthermore, the existing MDRL
solution [18] has been applied only in the context of structured
data sources with well-known schemas; while Blast does not
require a predefined schema (since it relies on the loose schema
information). Thus, the combination of the two methods is not
trivial, but it is surely a future direction that we aim to explore,
since the promising results achieved by Blast in the multi source
scenario of Section 5.8 (where the g and F parameters are not
considered).

Metadata exploitation — There is excellent related work in the
semantic Web community [17,53–55]. For instance, LIMES [53]
(an ER approach for the Web of Data), and LOV [54] (a system
attempting to standardize vocabularies) propose techniques to
exploit metadata, which may also be valuable to our problem,
but are orthogonal to our approach. In fact, Blast addresses the
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Fig. 20. Recall and precision achieved by the considered methods on the multi-source dataset.

blocking problem based purely on the attribute values, without
considering the semantics of the schema at all.

Entity Resolution with MapReduce-like Systems — Parallel
and distributed versions of traditional (schema-based) blocking
techniques have been extensively studied in [56,57]. Altowim and
Mehrota [58] have investigated how to generate candidate profile
pairs on MapReduce-like systems in pay-as-you-go (i.e., progres-
sive) fashion. Their proposed solution relies on the definition of
schema-based blocking keys. Finally, Efthymiou et al. [13] have
proposed the repartition meta-blocking algorithm to run graph-
based meta-blocking methods on MapReduce. In Sections 4 and
5, we extensively compare it against our proposed broadcast
meta-blocking algorithm.

Araújo et al. [59] have proposed a novel schema-agnostic
pruning strategy called Global Weighted Node Pruning (GWPN)
that combines a local threshold with a global one. The local
threshold is computed for each profile as for the WNP, while the
global one is computed as the average of all the edges weights.
This strategy aims to discard the edges with a low weight that
connects only profiles with a very low local threshold. Compared
to traditional WNP, GWNP improves precision of 0.01%, while
achieving the same recall, on DBpedia dataset [59]. Araújo et al.
also discuss a Spark implementation for their strategy, which is
based on the MapReduce parallel meta-blocking proposed in [13],
and suffers from the same limitations (see Section 4.2.2).

7. Conclusion and future work

In this paper we presented a holistic (meta-)blocking ap-
proach, Blast, able to automatically collect and exploit loose
schema information (i.e., statistics gathered directly from the
data for approximately describing the data source schemas).
We explained how this loose schema information can be ex-
tracted efficiently even from highly heterogeneous and volumi-
nous datasets through an LSH-based step. We proposed a novel
algorithm for efficiently running any meta-blocking technique on
MapReduce-like Systems. Finally, we experimentally evaluated it
on real-world datasets. The experimental results showed that:
(i) Blast outperforms the existing state-of-the-art meta-blocking
approaches in terms of quality of the results; (ii) our broadcast
meta-blocking is always faster than the existing state-of-the-
art when leveraging on distributed and parallel computation of
MapReduce-like Systems.

Relevant research problem can be explored as future direc-
tions: in the context of multi-data source ER, we aim to investi-
gate how to combine our Loose-Schema Aware (meta-)blocking
method with MDRL solution [18] (presented in Section 6). In
the context of progressive ER (a.k.a. pay-as-you-go ER) [47], we
aim to investigate how to exploit broadcast meta-blocking to

yield progressive results, maximizing the recall on the basis of
a limited resource budget (e.g., limited execution time, and/or
computational resources). Finally, we are planning to combine
our blocking technique for scaling to large dataset advanced
similarity functions that leverage on external knowledge bases,
such as [60], with other MapReduce-like systems [61], and on
real-world applications, such as the deduplication of web pages
tags [62].

References

[1] P. Christen, A survey of indexing techniques for scalable record linkage
and deduplication, IEEE Trans. Knowl. Data Eng. 24 (9) (2012) 1537–1555.

[2] X.L. Dong, D. Srivastava, Big data integration, Synth. Lect. Data Manag. 7
(1) (2015) 1–198.

[3] S. Bergamaschi, D. Beneventano, F. Mandreoli, R. Martoglia, F. Guerra, M.
Orsini, L. Po, M. Vincini, G. Simonini, S. Zhu, et al., From data integration
to big data integration, in: A Comprehensive Guide Through the Italian
Database Research Over the Last 25 Years, Springer, 2018, pp. 43–59.

[4] R. Baxter, P. Christen, T. Churches, et al., A comparison of fast blocking
methods for record linkage, in: ACM SIGKDD, vol. 3, Citeseer, 2003, pp.
25–27.

[5] P. Konda, S. Das, P. Suganthan GC, A. Doan, A. Ardalan, J.R. Ballard, H. Li, F.
Panahi, H. Zhang, J. Naughton, et al., Magellan: Toward building entity
matching management systems, Proc. VLDB Endowment 9 (12) (2016)
1197–1208.

[6] J. Madhavan, S.R. Jeffery, S. Cohen, X. Dong, D. Ko, C. Yu, A. Halevy,
Web-scale data integration: You can only afford to pay as you go, in:
Proceedings of CIDR, 2007, pp. 342–350.

[7] G. Papadakis, E. Ioannou, T. Palpanas, C. Niederee, W. Nejdl, A blocking
framework for entity resolution in highly heterogeneous information
spaces, IEEE Trans. Knowl. Data Eng. 25 (12) (2013) 2665–2682.

[8] G. Papadakis, G. Koutrika, T. Palpanas, W. Nejdl, Meta-blocking: Taking
entity resolution to the next level, IEEE Trans. Knowl. Data Eng. 26 (8)
(2014) 1946–1960.

[9] Y. Ma, T. Tran, Typimatch: Type-specific unsupervised learning of keys and
key values for heterogeneous web data integration, in: Proceedings of the
Sixth ACM International Conference on Web Search and Data Mining, ACM,
2013, pp. 325–334.

[10] C.E. Shannon, A mathematical theory of communication, SIGMOBILE Mob.
Comput. Commun. Rev. 5 (1) (2001) 3–55, http://dx.doi.org/10.1145/
584091.584093.

[11] G. Simonini, S. Bergamaschi, H. Jagadish, Blast: a loosely schema-aware
meta-blocking approach for entity resolution, Proc. VLDB Endowment 9
(12) (2016) 1173–1184.

[12] G. Papadakis, G. Papastefanatos, T. Palpanas, M. Koubarakis, Scaling entity
resolution to large, heterogeneous data with enhanced meta-blocking, in:
EDBT, 2016, pp. 221–232.

[13] V. Efthymiou, G. Papadakis, G. Papastefanatos, K. Stefanidis, T. Palpanas,
Parallel meta-blocking for scaling entity resolution over big heterogeneous
data, Inf. Syst. 65 (2017) 137–157.

[14] P. Christen, Data Matching - Concepts and Techniques for Record Linkage,
Entity Resolution, and Duplicate Detection, Data-Centric Systems and
Applications, Springer, 2012, http://dx.doi.org/10.1007/978-3-642-31164-
2.

[15] V. Christophides, V. Efthymiou, K. Stefanidis, Entity resolution in the web
of data, Synth. Lect. Semantic Web 5 (3) (2015) 1–122.

http://refhub.elsevier.com/S0306-4379(18)30408-3/sb1
http://refhub.elsevier.com/S0306-4379(18)30408-3/sb1
http://refhub.elsevier.com/S0306-4379(18)30408-3/sb1
http://refhub.elsevier.com/S0306-4379(18)30408-3/sb2
http://refhub.elsevier.com/S0306-4379(18)30408-3/sb2
http://refhub.elsevier.com/S0306-4379(18)30408-3/sb2
http://refhub.elsevier.com/S0306-4379(18)30408-3/sb3
http://refhub.elsevier.com/S0306-4379(18)30408-3/sb3
http://refhub.elsevier.com/S0306-4379(18)30408-3/sb3
http://refhub.elsevier.com/S0306-4379(18)30408-3/sb3
http://refhub.elsevier.com/S0306-4379(18)30408-3/sb3
http://refhub.elsevier.com/S0306-4379(18)30408-3/sb3
http://refhub.elsevier.com/S0306-4379(18)30408-3/sb3
http://refhub.elsevier.com/S0306-4379(18)30408-3/sb5
http://refhub.elsevier.com/S0306-4379(18)30408-3/sb5
http://refhub.elsevier.com/S0306-4379(18)30408-3/sb5
http://refhub.elsevier.com/S0306-4379(18)30408-3/sb5
http://refhub.elsevier.com/S0306-4379(18)30408-3/sb5
http://refhub.elsevier.com/S0306-4379(18)30408-3/sb5
http://refhub.elsevier.com/S0306-4379(18)30408-3/sb5
http://refhub.elsevier.com/S0306-4379(18)30408-3/sb7
http://refhub.elsevier.com/S0306-4379(18)30408-3/sb7
http://refhub.elsevier.com/S0306-4379(18)30408-3/sb7
http://refhub.elsevier.com/S0306-4379(18)30408-3/sb7
http://refhub.elsevier.com/S0306-4379(18)30408-3/sb7
http://refhub.elsevier.com/S0306-4379(18)30408-3/sb8
http://refhub.elsevier.com/S0306-4379(18)30408-3/sb8
http://refhub.elsevier.com/S0306-4379(18)30408-3/sb8
http://refhub.elsevier.com/S0306-4379(18)30408-3/sb8
http://refhub.elsevier.com/S0306-4379(18)30408-3/sb8
http://refhub.elsevier.com/S0306-4379(18)30408-3/sb9
http://refhub.elsevier.com/S0306-4379(18)30408-3/sb9
http://refhub.elsevier.com/S0306-4379(18)30408-3/sb9
http://refhub.elsevier.com/S0306-4379(18)30408-3/sb9
http://refhub.elsevier.com/S0306-4379(18)30408-3/sb9
http://refhub.elsevier.com/S0306-4379(18)30408-3/sb9
http://refhub.elsevier.com/S0306-4379(18)30408-3/sb9
http://dx.doi.org/10.1145/584091.584093
http://dx.doi.org/10.1145/584091.584093
http://dx.doi.org/10.1145/584091.584093
http://refhub.elsevier.com/S0306-4379(18)30408-3/sb11
http://refhub.elsevier.com/S0306-4379(18)30408-3/sb11
http://refhub.elsevier.com/S0306-4379(18)30408-3/sb11
http://refhub.elsevier.com/S0306-4379(18)30408-3/sb11
http://refhub.elsevier.com/S0306-4379(18)30408-3/sb11
http://refhub.elsevier.com/S0306-4379(18)30408-3/sb12
http://refhub.elsevier.com/S0306-4379(18)30408-3/sb12
http://refhub.elsevier.com/S0306-4379(18)30408-3/sb12
http://refhub.elsevier.com/S0306-4379(18)30408-3/sb12
http://refhub.elsevier.com/S0306-4379(18)30408-3/sb12
http://refhub.elsevier.com/S0306-4379(18)30408-3/sb13
http://refhub.elsevier.com/S0306-4379(18)30408-3/sb13
http://refhub.elsevier.com/S0306-4379(18)30408-3/sb13
http://refhub.elsevier.com/S0306-4379(18)30408-3/sb13
http://refhub.elsevier.com/S0306-4379(18)30408-3/sb13
http://dx.doi.org/10.1007/978-3-642-31164-2
http://dx.doi.org/10.1007/978-3-642-31164-2
http://dx.doi.org/10.1007/978-3-642-31164-2
http://refhub.elsevier.com/S0306-4379(18)30408-3/sb15
http://refhub.elsevier.com/S0306-4379(18)30408-3/sb15
http://refhub.elsevier.com/S0306-4379(18)30408-3/sb15


G. Simonini, L. Gagliardelli, S. Bergamaschi et al. / Information Systems 83 (2019) 145–165 165

[16] G. Simonini, G. Papadakis, T. Palpanas, S. Bergamaschi, Schema-agnostic
progressive entity resolution, IEEE Trans. Knowl. Data Eng. (2018) http:
//dx.doi.org/10.1109/TKDE.2018.2852763.

[17] P. Shvaiko, J. Euzenat, Ontology matching: state of the art and future
challenges, IEEE Trans. Knowl. Data Eng. 25 (1) (2013) 158–176.

[18] T. Ranbaduge, D. Vatsalan, P. Christen, A scalable and efficient subgroup
blocking scheme for multidatabase record linkage, in: Pacific-Asia Con-
ference on Knowledge Discovery and Data Mining, Springer, 2018, pp.
15–27.

[19] A.Z. Broder, On the resemblance and containment of documents, in:
Compression and Complexity of Sequences 1997. Proceedings, IEEE, 1997,
pp. 21–29.

[20] J. Leskovec, A. Rajaraman, J.D. Ullman, Mining of Massive Datasets,
Cambridge university press, 2014.

[21] T.M. Cover, J.A. Thomas, Elements of Information Theory, John Wiley &
Sons, 2012.

[22] T. De Vries, H. Ke, S. Chawla, P. Christen, Robust record linkage blocking
using suffix arrays, in: Proceedings of the 18th ACM Conference on
Information and Knowledge Management, ACM, 2009, pp. 305–314.

[23] A. Agresti, M. Kateri, Categorical data analysis, in: International
Encyclopedia of Statistical Science, Springer, 2011, pp. 206–208.

[24] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauly, M.J.
Franklin, S. Shenker, I. Stoica, Resilient distributed datasets: A fault-
tolerant abstraction for in-memory cluster computing, in: Presented as
part of the 9th USENIX Symposium on Networked Systems Design and
Implementation, NSDI 12, USENIX, San Jose, CA, 2012, pp. 15–28.

[25] J. Dean, S. Ghemawat, Mapreduce: simplified data processing on large
clusters, Commun. ACM 51 (1) (2008) 107–113.

[26] [link]. URL https://spark.apache.org/docs/2.1.0/programming-guide.html#
shuffle-operations.

[27] A.S. Das, M. Datar, A. Garg, S. Rajaram, Google news personalization: scal-
able online collaborative filtering, in: Proceedings of the 16th International
Conference on World Wide Web, ACM, 2007, pp. 271–280.

[28] S. Blanas, J.M. Patel, V. Ercegovac, J. Rao, E.J. Shekita, Y. Tian, A comparison
of join algorithms for log processing in mapreduce, in: Proceedings of
the 2010 ACM SIGMOD International Conference on Management of Data,
ACM, 2010, pp. 975–986.

[29] [link]. URL http://stravanni.github.io/blast/.
[30] H. Köpcke, A. Thor, E. Rahm, Evaluation of entity resolution approaches

on real-world match problems, Proc. VLDB Endowment 3 (1–2) (2010)
484–493.

[31] S. Das, A. Doan, P.S.G. C., C. Gokhale, P. Konda, The magellan data
repository, https://sites.google.com/site/anhaidgroup/projects/data.

[32] A. Harth, Billion Triples Challenge Data Set, 2012.
[33] D. Hand, P. Christen, A note on using the f-measure for evaluating record

linkage algorithms, Stat. Comput. 28 (3) (2018) 539–547.
[34] M. Ebraheem, S. Thirumuruganathan, S. Joty, M. Ouzzani, N. Tang,

Distributed representations of tuples for entity resolution, Proc. VLDB
Endowment 11 (11) (2018) 1454–1467.

[35] S. Mudgal, H. Li, T. Rekatsinas, A. Doan, Y. Park, G. Krishnan, R. Deep,
E. Arcaute, V. Raghavendra, Deep learning for entity matching: A design
space exploration, in: Proceedings of the 2018 International Conference on
Management of Data, ACM, 2018, pp. 19–34.

[36] O. Benjelloun, H. Garcia-Molina, D. Menestrina, Q. Su, S.E. Whang, J.
Widom, Swoosh: a generic approach to entity resolution, VLDB J. 18 (1)
(2009) 255–276.

[37] H. Köpcke, E. Rahm, Frameworks for entity matching: A comparison, Data
Knowl. Eng. 69 (2) (2010) 197–210.

[38] F. Naumann, M. Herschel, An Introduction to Duplicate Detection, Synthesis
Lectures on Data Management, Morgan & Claypool Publishers, 2010, http:
//dx.doi.org/10.2200/S00262ED1V01Y201003DTM003.

[39] M. Stonebraker, D. Bruckner, I.F. Ilyas, G. Beskales, M. Cherniack, S.B.
Zdonik, A. Pagan, S. Xu, Data curation at scale: The data tamer system, in:
CIDR 2013, Sixth Biennial Conference on Innovative Data Systems Research,
Asilomar, CA, USA, January 6–9, 2013, Online Proceedings.

[40] G. Papadakis, L. Tsekouras, E. Thanos, G. Giannakopoulos, T. Palpanas, M.
Koubarakis, The return of jedai: End-to-end entity resolution for structured
and semi-structured data, PVLDB 11 (12) (2018) 1950–1953, http://dx.doi.
org/10.14778/3229863.3236232.

[41] V. Efthymiou, G. Papadakis, K. Stefanidis, V. Christophides, Simplifying en-
tity resolution on web data with schema-agnostic, non-iterative matching,
in: 34th IEEE International Conference on Data Engineering, ICDE 2018,
Paris, France, April 16–19, 2018, pp. 1296–1299. URL http://dx.doi.org/10.
1109/ICDE.2018.00134.

[42] A.D. Sarma, A. Jain, A. Machanavajjhala, P. Bohannon, CBLOCK: an au-
tomatic blocking mechanism for large-scale de-duplication tasks, CoRR
abs/1111.3689, arXiv:1111.3689.

[43] U. Draisbach, F. Naumann, A generalization of blocking and windowing
algorithms for duplicate detection, in: 2011 International Conference on
Data and Knowledge Engineering, ICDKE 2011, Milano, Italy, September 6,
2011, pp. 18–24, http://dx.doi.org/10.1109/ICDKE.2011.6053920.

[44] L. Gravano, P.G. Ipeirotis, H.V. Jagadish, N. Koudas, S. Muthukrishnan, D.
Srivastava, Approximate string joins in a database (almost) for free, in:
VLDB 2001, Proceedings of 27th International Conference on Very Large
Data Bases, September 11–14, Roma, Italy, 2001, pp. 491–500.

[45] A. McCallum, K. Nigam, L.H. Ungar, Efficient clustering of high-dimensional
data sets with application to reference matching, in: Proceedings of the
sixth ACM SIGKDD international conference on Knowledge discovery and
data mining, Boston, MA, USA, August 20–23, 2000, pp. 169–178, http:
//dx.doi.org/10.1145/347090.347123.

[46] G. Simonini, G. Papadakis, T. Palpanas, S. Bergamaschi, Schema-agnostic
progressive entity resolution, in: 34th IEEE International Conference on
Data Engineering, ICDE 2018, Paris, France, April 16–19, 2018, pp. 53–64,
http://dx.doi.org/10.1109/ICDE.2018.00015.

[47] S.E. Whang, D. Marmaros, H. Garcia-Molina, Pay-as-you-go entity res-
olution, IEEE Trans. Knowl. Data Eng. 25 (5) (2013) 1111–1124, http:
//dx.doi.org/10.1109/TKDE.2012.43.

[48] T. Papenbrock, A. Heise, F. Naumann, Progressive duplicate detection, IEEE
Trans. Knowl. Data Eng. 27 (5) (2015) 1316–1329, http://dx.doi.org/10.
1109/TKDE.2014.2359666.

[49] D. Firmani, B. Saha, D. Srivastava, Online entity resolution using an oracle,
PVLDB 9 (5) (2016) 384–395.

[50] D. Firmani, S. Galhotra, B. Saha, D. Srivastava, Robust entity resolution
using a crowdoracle, IEEE Data Eng. Bull. 41 (2) (2018) 91–103, URL
http://sites.computer.org/debull/A18june/p91pdf.

[51] G. Papadakis, G. Papastefanatos, G. Koutrika, Supervised meta-blocking,
PVLDB 7 (14) (2014) 1929–1940, http://dx.doi.org/10.14778/2733085.
2733098.

[52] G. dal Bianco, M.A. Gonçalves, D. Duarte, Bloss: Effective meta-blocking
with almost no effort, Inf. Syst. 75 (2018) 75–89.

[53] A.N. Ngomo, S. Auer, LIMES - A time-efficient approach for large-scale
link discovery on the web of data, in: IJCAI 2011, Proceedings of the
22nd International Joint Conference on Artificial Intelligence, Barcelona,
Catalonia, Spain, July 16-22, 2011, pp. 2312–2317, http://dx.doi.org/10.
5591/978-1-57735-516-8/IJCAI11-385.

[54] P. Vandenbussche, B. Vatant, Linked open vocabularies, ERCIM News (96)
(2014).

[55] S. Bergamaschi, D. Ferrari, F. Guerra, G. Simonini, Y. Velegrakis, Providing
insight into data source topics, J. Data Semantics 5 (4) (2016) 211–228,
http://dx.doi.org/10.1007/s13740-016-0063-6.

[56] L. Kolb, A. Thor, E. Rahm, Dedoop: Efficient deduplication with hadoop,
PVLDB 5 (12) (2012) 1878–1881, http://dx.doi.org/10.14778/2367502.
2367527.

[57] S. Das, C. P.S.G., A. Doan, J.F. Naughton, G. Krishnan, R. Deep, E. Arcaute, V.
Raghavendra, Y. Park, Falcon: Scaling up hands-off crowdsourced entity
matching to build cloud services, in: Proceedings of the 2017 ACM
International Conference on Management of Data, SIGMOD Conference
2017, Chicago, IL, USA, May 14–19, 2017, pp. 1431–1446, http://dx.doi.
org/10.1145/3035918.3035960.

[58] Y. Altowim, S. Mehrotra, Parallel progressive approach to entity resolution
using mapreduce, in: 33rd IEEE International Conference on Data Engi-
neering, ICDE 2017, San Diego, CA, USA, April 19–22, 2017, pp. 909–920,
http://dx.doi.org/10.1109/ICDE.2017.139.

[59] T.B. Araújo, C.E.S. Pires, T.P. da Nóbrega, Spark-based streamlined
metablocking, in: Computers and Communications (ISCC), 2017 IEEE
Symposium on, IEEE, 2017, pp. 844–850.

[60] F. Benedetti, D. Beneventano, S. Bergamaschi, G. Simonini, Computing
inter-document similarity with context semantic analysis, Inf. Syst. 80
(2019) 136–147, http://dx.doi.org/10.1016/j.is.2018.02.009.

[61] S. Bergamaschi, L. Gagliardelli, G. Simonini, S. Zhu, Bigbench workload
executed by using apache flink, Proced. Manuf. 11 (2017) 695–702.

[62] F. Guerra, G. Simonini, M. Vincini, Supporting image search with tag
clouds: A preliminary approach, Adv. MM 2015 (2015) 439020:1–
439020:10, http://dx.doi.org/10.1155/2015/439020.

http://dx.doi.org/10.1109/TKDE.2018.2852763
http://dx.doi.org/10.1109/TKDE.2018.2852763
http://dx.doi.org/10.1109/TKDE.2018.2852763
http://refhub.elsevier.com/S0306-4379(18)30408-3/sb17
http://refhub.elsevier.com/S0306-4379(18)30408-3/sb17
http://refhub.elsevier.com/S0306-4379(18)30408-3/sb17
http://refhub.elsevier.com/S0306-4379(18)30408-3/sb18
http://refhub.elsevier.com/S0306-4379(18)30408-3/sb18
http://refhub.elsevier.com/S0306-4379(18)30408-3/sb18
http://refhub.elsevier.com/S0306-4379(18)30408-3/sb18
http://refhub.elsevier.com/S0306-4379(18)30408-3/sb18
http://refhub.elsevier.com/S0306-4379(18)30408-3/sb18
http://refhub.elsevier.com/S0306-4379(18)30408-3/sb18
http://refhub.elsevier.com/S0306-4379(18)30408-3/sb19
http://refhub.elsevier.com/S0306-4379(18)30408-3/sb19
http://refhub.elsevier.com/S0306-4379(18)30408-3/sb19
http://refhub.elsevier.com/S0306-4379(18)30408-3/sb19
http://refhub.elsevier.com/S0306-4379(18)30408-3/sb19
http://refhub.elsevier.com/S0306-4379(18)30408-3/sb20
http://refhub.elsevier.com/S0306-4379(18)30408-3/sb20
http://refhub.elsevier.com/S0306-4379(18)30408-3/sb20
http://refhub.elsevier.com/S0306-4379(18)30408-3/sb21
http://refhub.elsevier.com/S0306-4379(18)30408-3/sb21
http://refhub.elsevier.com/S0306-4379(18)30408-3/sb21
http://refhub.elsevier.com/S0306-4379(18)30408-3/sb22
http://refhub.elsevier.com/S0306-4379(18)30408-3/sb22
http://refhub.elsevier.com/S0306-4379(18)30408-3/sb22
http://refhub.elsevier.com/S0306-4379(18)30408-3/sb22
http://refhub.elsevier.com/S0306-4379(18)30408-3/sb22
http://refhub.elsevier.com/S0306-4379(18)30408-3/sb23
http://refhub.elsevier.com/S0306-4379(18)30408-3/sb23
http://refhub.elsevier.com/S0306-4379(18)30408-3/sb23
http://refhub.elsevier.com/S0306-4379(18)30408-3/sb24
http://refhub.elsevier.com/S0306-4379(18)30408-3/sb24
http://refhub.elsevier.com/S0306-4379(18)30408-3/sb24
http://refhub.elsevier.com/S0306-4379(18)30408-3/sb24
http://refhub.elsevier.com/S0306-4379(18)30408-3/sb24
http://refhub.elsevier.com/S0306-4379(18)30408-3/sb24
http://refhub.elsevier.com/S0306-4379(18)30408-3/sb24
http://refhub.elsevier.com/S0306-4379(18)30408-3/sb24
http://refhub.elsevier.com/S0306-4379(18)30408-3/sb24
http://refhub.elsevier.com/S0306-4379(18)30408-3/sb25
http://refhub.elsevier.com/S0306-4379(18)30408-3/sb25
http://refhub.elsevier.com/S0306-4379(18)30408-3/sb25
https://spark.apache.org/docs/2.1.0/programming-guide.html#shuffle-operations
https://spark.apache.org/docs/2.1.0/programming-guide.html#shuffle-operations
https://spark.apache.org/docs/2.1.0/programming-guide.html#shuffle-operations
http://refhub.elsevier.com/S0306-4379(18)30408-3/sb27
http://refhub.elsevier.com/S0306-4379(18)30408-3/sb27
http://refhub.elsevier.com/S0306-4379(18)30408-3/sb27
http://refhub.elsevier.com/S0306-4379(18)30408-3/sb27
http://refhub.elsevier.com/S0306-4379(18)30408-3/sb27
http://refhub.elsevier.com/S0306-4379(18)30408-3/sb28
http://refhub.elsevier.com/S0306-4379(18)30408-3/sb28
http://refhub.elsevier.com/S0306-4379(18)30408-3/sb28
http://refhub.elsevier.com/S0306-4379(18)30408-3/sb28
http://refhub.elsevier.com/S0306-4379(18)30408-3/sb28
http://refhub.elsevier.com/S0306-4379(18)30408-3/sb28
http://refhub.elsevier.com/S0306-4379(18)30408-3/sb28
http://stravanni.github.io/blast/
http://refhub.elsevier.com/S0306-4379(18)30408-3/sb30
http://refhub.elsevier.com/S0306-4379(18)30408-3/sb30
http://refhub.elsevier.com/S0306-4379(18)30408-3/sb30
http://refhub.elsevier.com/S0306-4379(18)30408-3/sb30
http://refhub.elsevier.com/S0306-4379(18)30408-3/sb30
https://sites.google.com/site/anhaidgroup/projects/data
http://refhub.elsevier.com/S0306-4379(18)30408-3/sb32
http://refhub.elsevier.com/S0306-4379(18)30408-3/sb33
http://refhub.elsevier.com/S0306-4379(18)30408-3/sb33
http://refhub.elsevier.com/S0306-4379(18)30408-3/sb33
http://refhub.elsevier.com/S0306-4379(18)30408-3/sb34
http://refhub.elsevier.com/S0306-4379(18)30408-3/sb34
http://refhub.elsevier.com/S0306-4379(18)30408-3/sb34
http://refhub.elsevier.com/S0306-4379(18)30408-3/sb34
http://refhub.elsevier.com/S0306-4379(18)30408-3/sb34
http://refhub.elsevier.com/S0306-4379(18)30408-3/sb35
http://refhub.elsevier.com/S0306-4379(18)30408-3/sb35
http://refhub.elsevier.com/S0306-4379(18)30408-3/sb35
http://refhub.elsevier.com/S0306-4379(18)30408-3/sb35
http://refhub.elsevier.com/S0306-4379(18)30408-3/sb35
http://refhub.elsevier.com/S0306-4379(18)30408-3/sb35
http://refhub.elsevier.com/S0306-4379(18)30408-3/sb35
http://refhub.elsevier.com/S0306-4379(18)30408-3/sb36
http://refhub.elsevier.com/S0306-4379(18)30408-3/sb36
http://refhub.elsevier.com/S0306-4379(18)30408-3/sb36
http://refhub.elsevier.com/S0306-4379(18)30408-3/sb36
http://refhub.elsevier.com/S0306-4379(18)30408-3/sb36
http://refhub.elsevier.com/S0306-4379(18)30408-3/sb37
http://refhub.elsevier.com/S0306-4379(18)30408-3/sb37
http://refhub.elsevier.com/S0306-4379(18)30408-3/sb37
http://dx.doi.org/10.2200/S00262ED1V01Y201003DTM003
http://dx.doi.org/10.2200/S00262ED1V01Y201003DTM003
http://dx.doi.org/10.2200/S00262ED1V01Y201003DTM003
http://dx.doi.org/10.14778/3229863.3236232
http://dx.doi.org/10.14778/3229863.3236232
http://dx.doi.org/10.14778/3229863.3236232
http://dx.doi.org/10.1109/ICDE.2018.00134
http://dx.doi.org/10.1109/ICDE.2018.00134
http://dx.doi.org/10.1109/ICDE.2018.00134
http://arxiv.org/abs/1111.3689
http://dx.doi.org/10.1109/ICDKE.2011.6053920
http://dx.doi.org/10.1145/347090.347123
http://dx.doi.org/10.1145/347090.347123
http://dx.doi.org/10.1145/347090.347123
http://dx.doi.org/10.1109/ICDE.2018.00015
http://dx.doi.org/10.1109/TKDE.2012.43
http://dx.doi.org/10.1109/TKDE.2012.43
http://dx.doi.org/10.1109/TKDE.2012.43
http://dx.doi.org/10.1109/TKDE.2014.2359666
http://dx.doi.org/10.1109/TKDE.2014.2359666
http://dx.doi.org/10.1109/TKDE.2014.2359666
http://refhub.elsevier.com/S0306-4379(18)30408-3/sb49
http://refhub.elsevier.com/S0306-4379(18)30408-3/sb49
http://refhub.elsevier.com/S0306-4379(18)30408-3/sb49
http://sites.computer.org/debull/A18june/p91pdf
http://dx.doi.org/10.14778/2733085.2733098
http://dx.doi.org/10.14778/2733085.2733098
http://dx.doi.org/10.14778/2733085.2733098
http://refhub.elsevier.com/S0306-4379(18)30408-3/sb52
http://refhub.elsevier.com/S0306-4379(18)30408-3/sb52
http://refhub.elsevier.com/S0306-4379(18)30408-3/sb52
http://dx.doi.org/10.5591/978-1-57735-516-8/IJCAI11-385
http://dx.doi.org/10.5591/978-1-57735-516-8/IJCAI11-385
http://dx.doi.org/10.5591/978-1-57735-516-8/IJCAI11-385
http://refhub.elsevier.com/S0306-4379(18)30408-3/sb54
http://refhub.elsevier.com/S0306-4379(18)30408-3/sb54
http://refhub.elsevier.com/S0306-4379(18)30408-3/sb54
http://dx.doi.org/10.1007/s13740-016-0063-6
http://dx.doi.org/10.14778/2367502.2367527
http://dx.doi.org/10.14778/2367502.2367527
http://dx.doi.org/10.14778/2367502.2367527
http://dx.doi.org/10.1145/3035918.3035960
http://dx.doi.org/10.1145/3035918.3035960
http://dx.doi.org/10.1145/3035918.3035960
http://dx.doi.org/10.1109/ICDE.2017.139
http://refhub.elsevier.com/S0306-4379(18)30408-3/sb59
http://refhub.elsevier.com/S0306-4379(18)30408-3/sb59
http://refhub.elsevier.com/S0306-4379(18)30408-3/sb59
http://refhub.elsevier.com/S0306-4379(18)30408-3/sb59
http://refhub.elsevier.com/S0306-4379(18)30408-3/sb59
http://dx.doi.org/10.1016/j.is.2018.02.009
http://refhub.elsevier.com/S0306-4379(18)30408-3/sb61
http://refhub.elsevier.com/S0306-4379(18)30408-3/sb61
http://refhub.elsevier.com/S0306-4379(18)30408-3/sb61
http://dx.doi.org/10.1155/2015/439020

	Scaling entity resolution: A loosely schema-aware approach
	Introduction
	Preliminaries
	Blocking for entity resolution
	Dirty ER and clean-cleanclean–cleanER
	Metrics

	Attribute-match induction
	Meta-blocking

	The blast approach
	Loose schema information extraction
	Loose attribute-match induction (LMI)
	LSH-based loose attribute-match induction
	Entropy Extraction

	Loosely schema-aware blocking
	Loosely schema-aware meta-blocking
	Blocking graph weighting
	Graph pruning


	Distributed meta-blocking 
	Mapreduce-like systems
	Basic Functions for MapReduce-like Algorithms

	Blast on mapreduce-like systems
	Distributed blocks generation
	Distributed blocking-graph processing


	Evaluation
	Experimental Setup
	Blast vs. state-of-the-art meta-blocking
	Blast components evaluation
	Aggregate Entropy
	Chi-squared weighting

	Blast sensitivity to parameters
	Broadcast vs. repartition meta-blocking
	Parallel-blast scalability
	LSH-based loose schema blocking
	Dirty ER
	Results

	Multiple data sources

	Related work 
	Conclusion and future work
	References


