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We present BLAST2, a novel technique to efficiently extract loose schema information, i.e., metadata that can
serve as a surrogate of the schema alignment task within the Entity Resolution (ER) process, to identify
records that refer to the same real-world entity when integrating multiple, heterogeneous, and voluminous
data sources. The loose schema information is exploited for reducing the overall complexity of ER, whose
naive solution would imply O(n?) comparisons, where n is the number of entity representations involved in
the process and can be extracted by both structured and unstructured data sources. BLAST?2 is completely
unsupervised yet able to achieve almost the same precision and recall of supervised state-of-the-art schema
alignment techniques when employed for Entity Resolution tasks, as shown in our experimental evaluation
performed on two real-world datasets (composed of 7 and 10 data sources, respectively).
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1 INTRODUCTION

In recent years, thanks to the growing awareness of the potential value of the data' and to the
constant decrease of the costs for storing it, companies and organizations started to gather huge
amounts of data related to any aspect of their business, even when not knowing in advance what
that data might be useful for. For example, for a manufacturing company, it is common to collect
along structured data about products and customers (just to name a few): semi-structured data
about machinery and sales agents activities coming from web services and unstructured data about
product reviews collected from the web.
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Fig. 1. Schema-agnostic (meta-)blocking process.

One of the main problems with these data is heterogeneity: Data scientists and practitioners
deal with data integration on a daily basis to merge datasets and unleash the true value of the
data. Being able to identify different representations (profiles) that pertain to the same real-world
entity in different datasets is a crucial task (known as Entity Resolution or Duplicate Detection)
for data integration, as well as for data science.

Another main problem arises due to the emerging increasing size of data sources, i.e., Big Data,
so that the Entity Resolution (ER) task has to take into account scalability and computational costs.
In fact, the naive solution of ER consisting of comparing all pairs of profiles is impracticable with
large datasets, and thus blocking techniques are employed to group similar records and limiting
the comparison only among the profiles contained in the same block.

When working with real-world data sources, to define blocking key (i.e., the blocking strategy)
yielding high recall and precision is a difficult task [6]. In particular, with heterogeneous data,
schema-aware techniques have two main issues: (i) schema alignment, hardly achievable with a
high heterogeneity of the data; (ii) labeled data to train classification algorithms, or human inter-
vention to select which attributes to combine. To overcome these problems, the schema-agnostic
approach was introduced [17]: Each profile is treated as a bag of words and schema-information is
ignored. For instance, Schema-Agnostic Token Blocking considers as blocking key each token that
appear in profiles, regardless of the attribute in which it appears, i.e., each pair of profiles sharing
at least one token is considered as a candidate match (Figure 1(a) and (b)).

However, schema-agnostic methods typically produce a very low precision: By employing
each token as a blocking key, the likelihood that many tokens yield superfluous comparisons is
high [16]. So, to alleviate this problem, they have been often coupled with meta-blocking [10, 17,
18, 21]. Meta-blocking aims to remove from a blocking collection the least-promising comparisons.
This is achieved by adopting the following model: Profiles and comparisons are respectively repre-
sented as nodes and edges of a graph (i.e., a node is linked to another node if the corresponding pro-
files co-occur in at least one block). Then, the edges are weighted on the basis of the co-occurence
of its adjacent profiles and for each profile a threshold is computed. Finally, the graph is pruned
removing the edges that have a weight lower than the threshold. In particular, Figure 1(c) shows
the effectiveness of meta-blocking: Each edge is weighted counting the co-occurring blocks of
its adjacent profiles and is retained if its weight is above the average. The dashed lines are the
removed comparisons, whereas the red ones are superfluous (i.e., comparison of non-matching
profiles).

In Reference [21], we proposed BLAST, which introduces the notion of loose schema information,
i.e., metadata extracted from the data in terms of (i) attribute partitioning and (ii) aggregate entropy
(Figure 2(a)). The idea beyond attribute partitioning is that the more values two attributes share, the
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Fig. 2. Meta-blocking with loose schema information.
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more they are similar, thus similar attributes are put together in the same partition. Then, the meta-
blocking takes into account the generated attributes’ partitions: The blocking key is composed by
tokens concatenated to partition IDs; in this way, for example, the token “Database” (Figure 2(b))
is split into two tokens, disambiguating “Database” as the name of a paper (“Database_C1”), and
“Database” as the name of a conference. In other words, on the basis of the loose schema infor-
mation the blocking key “Database” is disambiguated, then the profiles p1 and p4 share one less
block: As a consequence, the edge e1-4 decreases its weight from 3 to 2.

Aggregate entropy computes the entropy of each cluster and gives more importance to the pro-
files that co-occurs in blocks generated from clusters with high entropy. The idea is that finding
equalities inside a cluster with a high variability of the values (i.e., high entropy) has more value
that finding them in a cluster with low variability (i.e., low entropy). The aggregate entropy is used
to improve the edges weights: Each edge of the meta-blocking graph is re-weighted according to
the entropy associated to the block that generates it (i.e., the entropy of the partition from which
the blocking key belongs), as shown in Figure 2(c). This affects the meta-blocking by helping to
remove more superfluous comparisons than the ones removed by schema-agnostic blocking (the
three retained red edges of Figure 1(c) are now removed).

At the end of the pruning step, the meta-blocking produces the candidate pairs, i.e., pairs of
profiles related to the same entity. Then, these pairs have to be resolved, i.e., it is necessary to
decide whether a pair is a true match or not; this task is called entity matching. Several techniques
can be applied to perform this task, e.g., resolution functions, classifiers, crowdsourcing, and so
on. Finally, the retained matching pairs are clustered (entity clustering) to group together all the
profiles associated to the same entity.

1.1 Contributions

As demonstrated in our previous work [21], loose schema information can be exploited for sig-
nificantly improving blocking and meta-blocking. Yet, we notice that additional metadata can be
extracted efficiently and exploited for further improving the whole ER process. The intuition is to
try to detect subsets of the data sources that most likely will contain duplicate profiles (we call
this metadata loose duplicate information) and try to extract the loose schema information only
from that portion of data. This is because (i) it permits to ease the extraction thanks to a signifi-
cantly smaller amount of data considered; and (ii) the extracted information tends to be less noisy,
since it was derived from a portion of the data that is more dense in terms of duplicated pro-
files. To show this second aspect, we add some profiles to Source 2 (see Figure 3). These new data
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Fig. 3. New profiles added to Source 2 in Figure 1.

without duplicate profiles deteriorate BLAST's performance; in fact, since the attribute partition-
ing is based on shared values, the attribute Conference shares many values with Title and Name,
which will then be placed in the same cluster, so obtaining C1 = {Title, Name, Conference} and
C2 = {Venue, Journal}. This new attribute partitioning nullifies the effects of the loose schema in-
formation on the blocking key “Database,” that is, it is no longer possible to disambiguate between
“Database” in the Title of a paper and “Database” in the name of a Conference.

In other words, extracting loose schema information from a subset of entity profiles that are likely
to match (i.e., similar).

Moreover, by limiting the extraction to those profiles, there is the consequent advantage of pro-
cessing a significantly smaller amount of data, which translates to a significantly faster execution
time, as demonstrated in our experiments (see Section 4). We also propose an efficient method to
extract the loose duplicate information alongside with the loose schema information, making out
a new method, BLAST2 significantly more efficient than BLAST.

In detail, in this article we make the following contributions:

e We present an algorithm able to extract loose schema information and loose duplicate in-
formation, simultaneously.

e We show how to exploit the loose duplicate information extracted by portions of the
datasets with a new technique named BLAST2, which speeds up (and in some cases also
improve precision) of BLAST.

e We experimentally evaluate our novel technique on real-wold multi-source datasets—seven
datasets about movies and 10 datasets about books, gathered from openly available sources
of the Web—showing how it outperforms the current state-of-the-art (meta-)blocking
techniques.

The proposed method is implemented in a new version of SparkER, a distributed entity resolu-
tion tool, composed by different modules designed to be parallelizable on Apache Spark [9]. More
precisely, BLAST? is implemented in a blocker module that takes the input profiles and performs
the blocking phase, providing as output the candidate pairs. Other two modules are provided to
perform the complete ER process: an entity matcher module that takes the candidate pairs gener-
ated by the blocker and labels them as match or no-match; an entity clusterer module that takes
the matched pairs and groups them into clusters that represents the same entity.

We are currently integrating the SparkER tool in the MOMIS Data Integration System, which is
[1, 2] based on a classical wrapper/mediator architecture, where data are stored only at the level
of local data sources, while a Global Virtual Schema, gives an integrated virtual view of the data
sources. In the present article, MOMIS is used as a schema matching tool to obtain a Gold Standard
for the datasets used for the experiments (see Section 4). MOMIS has among its main features
the fast and semi-automatic development of data integration projects; the core of the system is
based on a process that discovers semantic similarities between local schemes and automatically
generates a Global Virtual Schema and its mappings with local schemes. Such mappings represent
an attribute partitioning of local attributes and, then, we can obtain the Gold Standard, for the
considered datasets.

ACM Journal of Data and Information Quality, Vol. 12, No. 4, Article 18. Publication date: November 2020.



BLAST2 18:5

The article is organized as follows. The next section contains preliminaries and related work.
In Section 3, we present BLAST2, which significantly improves BLAST as it works on a significant
smaller amount of data (portions of the datasets without loosing precision and recall). In Section 4,
we describe the setup and the datasets used for the experiments. Finally, Section 5 presents our
conclusions.

2 PRELIMINARIES AND RELATED WORK

This section describes the fundamental concepts and notation employed in this article following
the definitions of Reference [21], while presenting the related work on which our work is built.

2.1 Blocking for Entity Resolution

An entity profile is a tuple consisting of a unique identifier and a set of name-value pairs {a, v). Ap
is the set of possible attributes a associated to a profile collection P. A profile collection P is a set
of profiles. Two profiles p;, p; € P are matching (p;~p;) if they refer to the same real-world object;
Entity Resolution (ER) is the task of identifying those matches given #.

The naive solution to ER implies |P;|-|P2| comparisons, where |#;] is the cardinality of a profile
collection P;. Blocking aims to reduce this complexity by indexing similar profiles into blocks ac-
cording to a blocking key (i.e., the indexing criterion), restricting the actual comparisons of profiles
to those appearing in the same block.

We call block collection a set of blocks B, its aggregate cardinality is the cardinality of the set
of comparison C% entailed by the blocking collection 8, i.e., IC®| = 2ob,es 1bill, where [|b;]| is
the number of comparisons derived from the block ;. Following the best practices for blocking
evaluation [14, 17], our model employs an Entity Resolution Algorithm to determine if two profiles
are actually duplicates (i.e., refer to the same real-world entity). As a matter of fact, BLAST is
independent of such an algorithm—just as the other state-of-the-art blocking techniques (8, 17].

Recall and Precision are employed in this article to evaluate the quality of a block collection
B. The recall measures the fraction of duplicates that are indexed in the blocks, i.e., how many
duplicates can be identified; while the precision measures the fraction of useful comparisons, i.e.,
how many comparisons correspond to true duplicates.

Formally, for a block collection B:
cEND7| cEN D7

Fola ics
where C? is the set of comparison pairs entailed by the block collection B and D? is the set of
all the duplicates in P.

We call redundant comparisons the comparison of profiles that are entailed in the blocking col-
lection more than once (i.e., when two profiles are together in more than one block); and we
call superfluous comparisons the comparison of non-matching profiles (p; # p;). For example, in
Figure 1(c), the comparison between p; and p; is redundant, since such profiles are in the “seman-
tic,” “vldb,” and “data” blocks; the comparison between p; and p, is superfluous, since they are
non-matching profiles.

Attribute-match induction * approaches aim to enhance schema-agnostic blocking by avoiding
(some of) the superfluous comparisons. Meta-blocking is an approach aiming to reduce both super-
fluous and redundant comparisons restructuring a given block collection. In the following, both
attribute-match induction and meta-blocking are formally defined.

recall = precision =

2We refer as attribute-match induction for identifying all the approaches that group similar attributes, while we refer to the
specific technique proposed in Reference [14] with Attribute Clustering.
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2.2 Attribute-match Induction

The goal of attribute-match induction is to group together similar attributes of two profile collec-
tions directly from the distribution of their values, without leveraging on the semantics of their
names. This information about how the attribute can be grouped is then exploited to support a
schema-agnostic blocking technique, i.e., to disambiguate blocking keys in accordance to the at-
tribute group from which they are derived (e.g., tokens “database” in Figure 3(b)).

PROBLEM 1 (ATTRIBUTE-MATCH INDUCTION). Given two collections of profiles Py, P», attribute-
match induction is to identify pairs {{a;, a;) | a; € Ap,,a; € Ap,} of similar attributes on the basis
of a similarity measure and to exploit those pairs to partition the attribute name space (Ap, X Ap,)
in non-overlapping clusters, i.e., to yield the attributes partitioning.

This task is fundamentally different from the traditional schema-matching: The latter aims to
detect exact correspondences, hierarchies, and containment among attributes [20].

An attribute-match induction task is defined by four components, which are formally presented
later in this section: (i) the value transformation function, (ii) the attribute representation model,
(iii) the similarity measure to match attributes, and (iv) the clustering algorithm.

(1) The value transformation function. Given two profile collections #; and P, each
attribute is represented as a tuple (a;, 7(V,;)), where a; € Ap, is an attribute name; V,;
is the set of values that an attribute a; can assume in #;; and 7 is a value transformation
function returning the set of transformed values {r(v) : v € Vg, }. The function 7 typically is
the concatenation of text transformation functions (e.g., tokenization, stop-words removal,
lemmatization). Given a 7 transformation function, the set of possible values in the profile
collections is Ta = Tap, () Tap,, where To, = Ug,eap T(Va,)-

(2) The attribute representation model. An attribute a; is represented as a vector 7;
(named the profile of a;), where each element v;, € 7; is associated to an element ¢, € T4.
Ift, ¢ v(Vy,), thenv;, is equal to zero. While, if t,, € 7(Vj,), then v;, assumes a value com-
puted employing a weighting function, such as [14]: TF-IDF(t,) or the binary-presence of
the element t, in 7(V,,) (ie., vip = 1if t, € 7(V,,;), 0 otherwise). For example, say that
the value transformation function 7 is the tokenization function and that the function to
weight the vector elements is the binary-presence. Then, the attributes are represented as
a matrix: Each row corresponds to an attribute, each column corresponds to a possible
tokens appearing in the profile collections, and each element v;, is either 1 (if the token
t, appear in the attribute a;) or 0 (otherwise).

(3) The similarity measure. A similarity measure is used to compare the profiles 7; and 7
of each attribute pair (aj, ar) € (Ap, X Ap,). Typical similarity measure, such as Jaccard
and Cosine, can be used; the only requirement is that the similarity measure has to be com-
patible with model used for attribute representation; for example, the Jaccard similarity
cannot be used with the TF-IDF weighting.

(4) The clustering algorithm. The input of a clustering algorithm are the attribute pairs
with the computed similarities of their profiles, which are exploited to perform the parti-
tioning of the attribute names. (See Section 3.1 for more details.) The output of a clustering
algorithm is called attributes partitioning; notice that we use non-overlapping partitioning.

2.3 Meta-blocking

By employing redundant blocking techniques—i.e., extracting multiple blocking keys from each
profile—the chance of missing comparisons that correspond to matches decreases, but the down-
side is that many superfluous/redundant comparisons typically are introduced (e.g., two profiles
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may appear together in more than one block yielding a redundant comparison). The goal of meta-
blocking [17] is to restructure a block collection, built with a redundant blocking technique, by re-
moving superfluous/redundant comparisons: If the number of those comparisons decreases, then
the recall is not affected, while the precision increases. This comparison pruning is done in meta-
blocking by exploiting the intuition that the more blocks two profiles appear in together, the more
likely they will be considered duplicates by the Entity Resolution algorithm. In the following a
more formal presentation of meta-blocking is given.

PROBLEM 2 (META-BLOCKING). Given a block collection B, meta-blocking is the task to re-

structure the blocks in a new block collection B’ such that precision(B’) >precision(B) and
recall(B’)~recall(B).

In graph-based meta-blocking (or simply meta-blocking from now on), a block collection 8 is
represented by a weighted graph Gg{Vg, Eg, Wg} called blocking graph. V is the set of nodes
representing all p; € . An edge between two entity profiles exists if they appear in at least one
block together: E = {e;; : Ap;, pj € P | |Bij| > 0} is the set of edges; B;; = B; N B;, where B; and
B; are the set of blocks containing p; and p;, respectively. ‘W is the set of weights associated to the
edges. Meta-blocking methods weight the edges to capture the matching likelihood of the profiles
that they connect. For instance, block co-occurrence frequency (a.k.a. CBS) [15, 19] assigns to
the edge between two profiles p, and p, a weight equal to the number of blocks they shares,
ie, w$BS =18,| N |8,|. Then, to keep only more promising edges, we can apply suitable edge-
pruning strategies. In this way, after this pruning step, each connected pair of nodes forms a new
block of the restructured blocking collection.

Meta-blocking can operate by keeping all the candidate comparisons that are weighted above
a certain threshold or in a top-k fashion. We call the first case Weighted Pruning, while Cardi-
nality Pruning the latter. The weight threshold, or the k for the top-k approach, can be defined
at the local level (i.e., for each profile/node in the graph), or at the global level (i.e., for all the
edges in the graph). Hence, the combination of those strategies yields the following pruning strate-
gies: (i) Weight Edge Pruning, where edges with a weight lower the given threshold are pruned;
(if) Cardinality Edge Pruning, where edge are sorted in descending order with respect to their
weights, and then only the first K are kept; (iii) Weight Node Pruning considers in turn each node
p; and its adjacent edges, and edges that are lower than the given threshold are pruned; and (iv)
Cardinality Node Pruning similarly to the previous one is node centric, but a cardinality threshold
k; is used instead of a weight threshold.

2.4 Locality Sensitive Hashing

In this section, we introduce the basics of Locality Sensitive Hashing, an approximate technique to
discover similar item sets. In particular, we focus on MinHash, for Jaccard Similarity [12].

Locality Sensitive Hashing (LSH) is a family of hash functions that aims to reduce the dimension-
ality of a high-dimensional space, while preserving the similarity distances. In the context of this
article, we are interested in set-based similarities for identifying attributes belonging to different
data source that has similar set of values; hence we focus on Jaccard similarity and MinHash-based
LSH [12].

Algorithm 1 shows how MinHash signatures are computed. The MinHash computation algo-
rithm takes as input a set of elements, in the following we consider sets of attributes, for showing
how LSH can be employed for attribute-match induction by representing each attribute as a set
of values, i.e., a column of a dataset is represented as a vector whose elements are the values ap-
pearing in the cells of the column—optionally transformed with string transformation functions,
e.g., lowercase, and so on. Then, a set of m hash functions are applied to each cell of the columns,
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ALGORITHM 1: MinHash Computation

Require: A set of elements S, which are either the columns or the rows of a dataset; the size of S is n
Require: A set H of m hash functions: {¢1, P2, ..., Pm}
Ensure: The MinHash matrix M // M[i] is the signature of the i—zh element (i.e., column/row depending on the

input)
1: M = new Matrix.shape(n, m, +c0) // A n x m matrix whose elements are initialized to +co, e.g., by using INT_MAX
2: for eache; € S do
3 for each cell € e; do
4: for each ¢; € H do
5 if ¢j(cell) < M[i][j] then
6 M[i][j] = ¢j(cell)

return M

ALGORITHM 2: Banding

Require: A nx m MinHash matrix M
Require: t, a similarity threshold
Ensure: A set C of index pairs of element that have a similarity approximately greater than ¢.
1: Buckets = Map // e.g., a Dict in Python
2: r « estimateNumRowsPerBand(m, t) // Function that estimate the number of rows for band
3: for each i € range(0,n) do
4 counter = 0
5 signature =
6: for each j € range(0, m) do
7
8
9

)

signature = concat(signature, M[i][j])
counter = counter + 1
if counter == r then

10: B = Buckets.getOrInitialize(signature, {})
11: B.add(i)
12: Buckets.put(signature, B)
13: r=0
14: signature = “”
15: for each B € Buckets do
16: for each (i,j) € B X B do// For each possible pair of index in the current bucket
17: if i<j then
18: C.add((ij))
19: if i>j then
20: C.add((j.,1))
return C

and for each function only the minimum value for each column is kept. This value is known as
MinHash and the n MinHashes of each column are called the MinHash signature of the column.
Interestingly, the probability of yielding the same MinHash values for two columns, is equal to
their Jaccard similarity; thus, MinHash preserves the similarity transforming the matrix, with the
advantage of reducing the dimension of the vectors representing the attributes.

Yet, even for small m (e.g., 64), computing the similarity of all possible MinHash signature pairs
may be computationally expensive, due to the quadratic complexity of the all-pairs comparison;
thus, the signatures are partitioned in bands and only signatures that are identical in at least one
band are considered—this step is knwon as banding and described in Algorithm 2. Overall, if m
MinHash values and b bands are employed for the signature generation and banding, respectively,
then the probability of two attributes being identical in at least one band is 1 — (1 — s”)?, where
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r = m/b is the number of rows per band. This function has a characteristic S-curve form, and its
inflection point represents the threshold of the similarity. The threshold can be approximated to
(1/b)Y". For instance, choosing b = 30 and r = 5, the attribute pairs that have a Jaccard similarity
greater than ~0.5 are considered for the attribute-match induction (Figure 4).

3 BLOCKING WITH LOOSE SCHEMA/DUPLICATE INFORMATION

In this section, we introduce the novelties of BLAST2 w.r.t. BLAST. In the first part (Section 3.1), we
include a complete description of BLAST [22]. Then, in the second part (Section 3.2) we describe
BLAST2 whose core functionality is equivalent to BLAST, i.e., both exploit the loose schema infor-
mation in the same way for blocking and meta-blocking, but it introduces a novel preprocessing
step that permits to extract much efficiently the loose schema information.

3.1 BLAST

BLAST s an efficient method to automatically extract loose schema information, which is then used
for both blocking and meta-blocking. This holistic combination significantly helps in producing
high-quality candidate pairs for ER, compared to other existing meta-blocking techniques, which
operates only in completely schema-agnostic setting [8, 15, 17].

For the sake of the presentation, in this section we consider the case of detecting duplicates from
two different data sources (; and P, in in Figure 5), but our method works in the same exact way
also when multiple data source are considered—as a matter of fact, in our experimental evaluation
(Section 4) multi-source datasets are employed. The overall workflow of BLAST is depicted in
Figure 5: the loose schema information is extracted from the data sources (phase 1) and then it is
exploited for building (phase 2) and restructuring (phase 3) a blocking collection. In the following,
these three phases are described in more details.
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Phase 1: The loose schema information is extracted; it is composed of the attributes parti-
tioning and the aggregate-entropy. The first consists of clusters of attributes (clustered
according to their values’ similarity); the second measures how informative is each of
these clusters; together we call these peaces of information: loose schema information. For
extracting the attributes partitioning, BLAST exploits an LSH-based algorithm: minhash
signatures are employed to quickly approximate the similarities of the attributes and to
build a similarity graph of attributes, which is given as input to a graph-partitioning al-
gorithm (the details of the algorithm can be found in Reference [21]). BLAST also extracts
the (Shannon) entropy of each cluster of attributes (which is the average of the entropies
of its attributes). Basically, the entropy is a measure of how informative is a set of at-
tributes: intuitively, if all the values in the partition are the same, then the entropy is
equal to zero, and it should not be used indeed for generating blocking keys, since all the
profiles would be indexed in just one unique block. However, if the entropy is high, then
the profiles share values from that attribute partition that are less frequent, and hence the
derived blocking keys will be more likely useful.

Phase 2: A schema-agnostic blocking technique is applied on each attribute partition obtained
in the previous phase. For instance, in our experiments (see Section 4) Token Blocking [16]
is employed: Each token is a blocking key, regardless to the attribute of the partition in
which it appears in. We call the resulting method Loose-Schema Blocking.

Phase 3: The blocking strategy described in the previous phase allows us to achieve a high
level of recall, but it tends to generate a lot of superfluous comparisons. For this reason,
a meta-blocking step is performed to generate the final candidate pairs. In particular,
BLAST leverages on the entropy extracted in Phase 1 to weight all the candidate pairs
generated in Phase 2. The basic idea is to build a graph (the Blocking Graph), where each
edge corresponds to a set of blocking keys, and each blocking key is associated to an
attribute. Then, the edges are weighted accordingly to their entropy.

For example, consider two independent datasets with people information. Generally,
the attribute birth date is less informative than the attribute surname. This is because the
number of distinct birth dates is typically lower than that of the surnames—and the en-
tropy of the former is lower than the entropy of the latter. Thus, BLAST assigns a higher
weight to edges that represents blocking keys derived from the surnames than those de-
rived from the birth dates. In particular, BLAST weights the edges computing the (Pear-
son) chi-square coefficient—the idea is to measure the significance of the co-occurrence
of two profiles in a block—multiplied by the aggregate entropy associated to the blocking
keys corresponding to that edge. Finally, BLAST applies a local pruning by computing a
threshold for each node in the graph (equal to half of the maximum weight of the adjacent
edges®).

3.2 BLAST2

Here, we present BLAST2, which consists in a novel preprocessing step that allows to ex-
tract the loose schema information in a significantly more efficient way compare to BLAST
and even improve the quality of the results in some cases. This is achieved by identifying por-
tions of the datasets that are likely to be dense in duplicates (i.e., subsets of the profiles that
match to each other) and extract the loose schema information only from there. The benefit is
twofold:

3This is a heuristic that has been shown to work well in practice [21].
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Fig. 6. A dataset matrix (rows are profiles, columns are attributes) used for the extraction of minhash
signatures.

(1) by considering less data the loose schema information extraction is faster;
(2) by considering only profiles that are likely to be duplicates, the attribute partitioning tends
to be less noisy since less false positive duplicates are considered.

Remember that the attribute partitioning information that we want to mine is employed as a
surrogate of the schema alignment for the ER process. Intuitively, if BLAST takes as input two sets
of profiles that are perfectly duplicated with identical schemas (see in Phase 1 in Section 3.1), then
its output would be a perfect schema alignment; hence, in a real-world case, where the datasets
are not identical, profiles that have no duplicates are superfluous to this phase (i.e., they represent
noise) and can be removed. We call the information about the portions of the datasets that are
likely to be dense duplicates loose duplicate information.

Interestingly, LSH can be employed for identifying duplicated profiles as well as for determining
the attribute partitioning: In the former case, the profiles (i.e., the rows of the datasets) are indexed,
gathering together likely-to-match profiles; while, in the latter case, the attributes (i.e., the columns
of the datasets) are considered as document and indexed though LSH for bucketing together similar
attributes. Hence, in BLAST2 we propose to apply LSH to extract the loose duplicate information
to narrow down the search space for the LSH employed for identifying the attribute partitioning.
Yet, what is saved by restricting the search space of the attribute partitioning step may not pay
off the computational costs. Algorithm 1 shows how MinHash signatures are computed by the
traditional LSH [12]—the input can be either the set of rows (first case mentioned above) or the set
of columns (second case mentioned above). The output is a matrix of MinHash values—it can also
be viewed as an array of MinHash signatures—that has to be processed with Algorithm 2 to yield
actual pair of similar rows (or columns). If we want to identify similar row and similar columns,
then we need to execute Algorithm 1 and Algorithm 2 twice: one for the rows and one for the
columns. Yet, much computation would be redundant, since the same cells are hashed in both the
executions—they are just combined differently to generate the MinHash signatures.

In BLAST?2, we present Algorithm 3 to compute the MinHash signatures of the profiles and the
attributes (rows and columns of the datasets, respectively) in a single pass and not as two separated
tasks. The main advantage is that Algorithm 3 avoids recomputing the hash functions employed
for computing the MinHash signatures of columns and rows. To help in understanding the process
of simultaneously computing row and column signatures, let us consider Figure 6, where a dataset
is represented as a matrix of profiles and attributes and each cell represents a value of an attribute
of a profile. When the MinHash signature of row p; is computed, n hash functions are applied to
each cell of that row; for instance, h(vy;) represents the application of the hash function A to the
token vy;—first row and first column of the matrix. When the MinHash signature of the column
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A is computed, the same m hash functions are applied to the rows, for instance h(v;;1). Hence, the
opportunity of avoiding the recomputation of all the hash functions. In this way, BLAST?2 is able to
compute both row and column MinHashes in one single pass: The time complexity is equivalent
to LSH applied on columns (or rows) singularly, and the space complexity is O(JA| + |P|), where
|A| is the size of the attribute set and |P| is the size of the profile set—i.e., the space needed to store
the signatures of attributes and profiles.

Thus, in conclusion, the output of Algorithm 3 is the loose schema information, which is em-
ployed for loosely schema-aware meta-blocking (as in BLAST), but they way it is extracted is much
more efficient compared and its quality is better compared to BLAST.

ALGORITHM 3: Combined column-row LSH (Blast2)

Require: A dataset of elements S
Require: A set H of m hash functions: {¢1, ¢2, ..., ¢m}
Require: oy, Lo, the similarity threshold for columns and rows
Ensure: The set C of column pairs that represent the surrogate schema mapping
1: M = new Matrix.shape(n, m, +c0) // A n x m matrix whose elements are initialized to +co, e.g., by using INT_MAX

2: HashCash < Map// e.g., a Dict in Python to store already computed hashes for a given element

3: for each Row; € S do

4 for each cell € Row; do

5: if HashCash.get(¢1 (cells)==[] then //if empty

6 hashes < new Array(m) //an empty array of size m (i.e., the number of hash functions)
7 for each ¢; € H do

8 hashes[j] < ¢;(cell)

9

else
10: hashes = HashCash.get(¢1 (cell))
11: for each hj € hashes do
12: if M[i][j] < hj thenM[i][j] = h;

13: 1 « estimateNumRowsPerBand(m, t,ow) //Function that estimate the number of rows for band

14: SimilarRows « banding(M, r) // Set of rows that have similar rows in the dataset

15: S” « filter(S,SimilarRows) // keep only the n’ rows that appear in the SimilarRows set

16: M’ = new Matrix.shape(n’, m, +00)// A n’ x m matrix whose elements are initialized to +co, e.g., by using
INT_MAX

17: for each Col; € S do

18: for each cell € Row; doHashCash.get(¢1 (cell))

19: for each hj € hashes do

20: if M'[i][j] < hj thenM'[i][j] = h;

21: 1 « estimateNumRowsPerBand(m, tcol) // Function that estimate the number of rows for band

22: C « banding(M’, r)return C

4 EVALUATION

In this section, we describe the setup and the datasets used for the experiments that we have
conducted. The goal of our experiments is to answer these questions:

(1) What is the performance of BLAST2 in terms of precision, recall, and execution time com-
pared to schema-agnostic Token Blocking, BLAST, and BLAST modified to use the
Gold Standard (i.e., using the Gold Standard as attribute partitioning)?

(2) How does the LSH threshold affect BLAST2 performance? (Section 4.2)

Setup. All the experiments had been performed on a machine with Intel Xeon E3-12xxv2 3.00
GHz (16 cores) and 100 GB of RAM, running Ubuntu 18.04. All the code is in Scala 2.11.8, and we
employ Apache Spark 2.1.0.
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Table 1. Dataset Characteristics: Number of Entity Profiles, Number of Attribute Names,
and the Number of Duplicates in the Ground Truth

Movies small Books
#profiles | #attributes #profiles | #attributes
Amazon 5.2k 6 Amazon1 3.5k ot
IMDB1 6.4k 2 Amazon?2 8.9k 21
IMDB2 2.9k 10 Amazon3 3.0k 8
IMDB3 6.9k 6 BarnesNoble1l 3.5k ot
RogerErbert 3.5k 8 BarnesNoble2 3.7k 16
Rotten1 7.3k 16 BarnesNoble3 3.0k 8
Rotten2 3.0k 10 BarnesNoble4 9.9k 13
ground-truth BarnesNoble5 3.0k 9
#duplicates GoodReads 3.9k 16
Books 1.2k Half 3.1k 10
Movies small 211k Movies big
Movies big 331k | #profiles | #attributes
Movies small
IMB4 | M [ n

Datasets. To evaluate the performance of BLAST2, we used two multi-data source scenarios.
The datasets employed for the tests have been collected from the Magellan repository [7]; in partic-
ular, we consider three collections of heterogeneous records that we called Movies small, Books,
and Movies big.Movies small is composed of seven datasets that contain records gathered on-
line from RogerEbert.com, Amazon.com, RottenTomatoes. com, and IMDB. com, all about movies.
Books is composed of 10 datasets that contain records gathered online from BarnesandNoble. com,
Amazon.com, GoodReads.com, and Half.com, all about books. Movies big contains the same
datasets contained in Movies small but extended with another version of IMDB that contains
1.1M of records. Considered singularly, none of these datasets contains duplicates.

The characteristics of the datasets are reported in Table 1. All the considered datasets have
different schemas [11]. The ground truth has been generated using the Magellan system [11], and
the number of identified duplicates in each scenario is reported in Table 1. The Gold Standard for
the attribute clustering has been generated using the MOMIS system as described in Section 4.3
(and reported in Appendix A, Table 2).

4.1 Blast2 Performance

In this experiment, the meta-blocking is applied on block collections generated from the two
datasets with different methods:

e MB NoSchema: employs the schema-agnostic Token Blocking;

e BLAST: employs the Loose-Schema Blocking (i.e., Token Blocking within each attribute par-
tition as described in Section 3.1);

e BLAST2 employs the LSH in combination with Loose-Schema Blocking;

e MB SchemaAligned: employs the Loose-Schema blocking employing the Gold Standard for
generating the attribute partitioning. The provided schema perfectly aligns all the attributes
(see Section 4.3).

Figure 7 shows the results in terms of recall and precision. All the methods obtain the same
recall on Books and Movies small. On Movies big (Figure 7(e)), BLAST and BLAST2 obtain a
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Fig. 8. Execution time of meta-blocking over all datasets.
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Fig.9. Reduction Ratio (RR) of meta-blocking over all datasets. The reduction ratio is computed with respect
to the number of comparisons generated with Token Blocking.

lower recall than MB NoSchema and MB SchemaAligned. BLAST?2 obtains a better precision on all
the datasets (Figure 7(b), (d), and (f)), showing the effectiveness of the proposed method.

Figure 8 shows the execution time of all methods on both datasets. MB SchemaAligned is always
faster than other methods, but we are not considering here the time to generate it, which requires
the user in the loop. On all the datasets BLAST2 outperforms Blast, as it is 27% faster on Books,
23% faster on Movies small, and 8% faster on Movies big.

Figure 9 shows the Reduction Ratio (RR) with respect to the original block collection obtained
with Token Blocking. RR expresses the relative decrease in cardinality of the new collection of
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Fig. 10. Precision, recall, number of comparisons, and percentage of profiles used in the schema alignment
step, obtained by varying the LSH threshold used in BLAST?2.

block B’ in comparison with the original block collection B and is computed as RR(B,B’) =1 —
[|B’]l/1|Bll, a higher value means better performance. BLAST2 obtains a better RR on Books and
Movies small (Figure 9(a) and (b)), gaining a 42% reduction of comparisons on Books (Figure 9(a))
and 35% on Movies small (Figure 9(b)). Regarding Movies big, all the methods obtain almost
the same RR, due to the high number of superfluous comparisons that are in the original block
collection that are removed by the meta-blocking.

These results can be explained by analyzing the clusters of attributes generated by the differ-
ent methods. BLAST?2 achieves better results by employing LSH as prefiltering generates better
clusters for ER, as it uses only the most similar profiles to extract the attribute partitioning in-
formation and removes the noise generated by the less-similar ones. For example, BLAST gener-
ates the cluster {Rotten1.description, IMDB1.description, Rotten2.summary, IMDB3.movie_name,
IMDB2.summary} (cluster 10 in Table 3 in Appendix A for the full list of cluster), in which the movie
name is erroneously clustered with the movies summaries. This yields superfluous comparisons,
as it compares the titles with the summaries, which are most of the time not related; moreover,
the summaries contain many tokens, so generating many superfluous blocks. Differently, BLAST2
places correctly the title in a cluster with all other titles (Table 3, cluster 3, in Appendix A) and
making a cluster with only the movies summaries (Table 3, cluster 11, in Appendix A). Moreover,
BLAST?2 produces better clusters than the Gold Standard for ER, because by relying only on the
actual values of the attributes it clusters together attributes that are not matched by traditional
schema-alignment techniques—or by human experts. For example, in the Gold Standard, the at-
tributes directors and creators are separated into two different clusters (Table 2, clusters 5 and 6, in
Appendix A), but they can be correlated as frequently the director is also a creator in the datasets.
BLAST2 generates a single cluster for these two attributes (Table 4, clusters 4, in Appendix A),
producing better blocks for ER tasks.

4.2 How Does the LSH Threshold Affect BLAST2 Performance?

In this experiment, BLAST2 is applied on all the datasets by varying the LSH threshold in
the preprocessing phase. Figure 10 shows the results in terms of recall, precision, number of
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= Mapping Table: MOVIE

MOVIE(globalSource) ail(al) i1(i1) i2(i2) i3(i3) r(r) rti(rtl) rt2(rt2)
ContentRating ContentRating ContentRating pg_rating ContentRating
Director director directors Director Director directors Director Director
Duration duration Duration Duration duration Duration Duration
Language Language
Rating movie_rating Rating RatingValue critic_rating RatingValue Rating
Release Date ReleaseDate Release Date
Summary Summary Summary
Title title movie_name Title Name movie_name Name Title
actors star actors Cast Cast actors £ Actors , Cast Cast
genre genre Genre Genre genre Genre Genre
year year year Year YearRange year Year Year

Fig. 11. Mapping Table for the MOVIE dataset.

comparisons, and percentage of profiles used for the attribute partitioning task. Keeping too-few
profiles (i.e., with an high threshold) causes a reduction of precision (Figure 10(d) and (f)). This hap-
pens because the attribute partitioning is done only on the values of the attributes, and reducing
the profiles leaves too few values to compare to obtain a good attribute partitioning. The attributes
that are not similar to any other attribute (i.e., not clustered) are placed in the Blob cluster, causing
two effects to be noticed: (i) many superfluous comparisons are generated (Figure 10(g) and (h)),
and (ii) the recall does not change (Figure 10(a)—(c)).

4.3 Gold Standard Generation: MOMIS

In this section, we describe how to obtain a Gold Standard for the attribute clustering by using
the MOMIS Data Integration System [2]. Given the MOVIE scenario (the BOOK scenario), we
perform a data integration process by considering all the datasets (each dataset corresponds to
a local class in the MOMIS terminology). This process includes a schema alignment step (which
will be briefly described below) where semantic similarities among attributes of local classes are
automatically detected, similar attributes are grouped together into cluster to form a global at-
tribute, and then a Global/Integrated Class is obtained. The result is represented by means of a
Mapping Table (MT), as shown in Figure 11 for the MOVIE scenario: A column represents a local
class, i.e., a dataset E;, and a row represents a global attribute, i.e., a cluster C; of local attributes;
the element MT[C;][E|] is the set of attributes of E; belonging to C;. As an example, the element
MOVIE[actors][rt1] = {Actors, Cast} is the set of attributes of the dataset denoted by rt1 be-
longing to the cluster denoted by actors.*

In the following, we describe the main steps of the MOMIS process for the Mapping Table
Generation.
1. Lexical annotation of local schemata: to associate a “meaning” to schema labels (class
and attribute names of the local schemata) a semi-automatic annotation with respect to a the-
saurus/lexical resource is performed; currently, MOMIS uses both the Wordnet lexical database
[13] and domain thesaurus. In other words, to make the meaning of the schema labels explicit,
they are mapped in elements of a thesaurus/lexical resource. However, in real-world scenarios,
automatic lexical annotation methods have limited performance due to the abundant presence
of non-dictionary terms, such as acronyms/abbreviations and compound names. To increase the
number of comparable schema labels, we proposed in Reference [23] a schema label normaliza-
tion method; this methods is implemented in the NORMalizer of Schemata (NORMS) component
of MOMIS.

As shown in Figure 12, the first step of the schema label normalization method is a simple prepro-
cessing step, where terms are tokenized; for example, the attribute name “pg_rating” is tokenized

“Please note that in Figure 11 datasets are denoted by symbols, with the following correspondence: a1 is Amazon.
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THE SCHEMA NORMALIZZATION METHOD EXAMPLE

Schema labels }7 4| pg_rating

Schema labels Preprocessing

Preprocessed labels — { PG Rating

Expanded labels = — ParentalGuidance Rating

CN Interpretation

Interpretation of CNs |7 —»{ Rating ABOUT ParentalGuidance

Fig. 12. Overview of the normalization method: for each phase the input and output is shown, with a related
example.

in two words, “PG” and “Rating.” The second step is the abbreviation expansion step, where abbre-
viations are recognized and then expanded; in our example, the abbreviation “PG” is expanded as
“ParentalGuidance.” The last, and most important, step is the compound names Interpretation,
where the expanded label “ParentalGuidance Rating” is recognized as a compound name, then a
semi-automatic method for its interpretation is applied, and a new entry for the label “Parental-
Guidance Rating” is inserted in the local Wordnet lexical database. The output of the normalization
method is the normalized label “ParentalGuidance Rating” with its interpretation (“Rating ABOUT
ParentalGuidance”).

2. Common Thesaurus and Mapping Table Generation:

The local schemata are used by MOMIS to construct a Common Thesaurus (CT) consisting of the
following semantic relationships among schema labels: synonyms (SYN), holonymy/meronymy
(RT), and narrower terms/broader terms/ (NT/BT). Such semantic relationships are mainly lexicon-
derived relationships, i.e., relationships derived by the annotation of local schemata with respect to
a thesaurus/lexical resource, such as WordNet. For example, a SYN relationship between cast and
actor can be directly derived from Wordnet, thank to the gloss “the actors in a play” of cast; more-
over, in WordNet, star is a direct hyponym of actor. However, to find a SYN relationship between
name and title can be derived only after we annotate the term name as title. This operation is
performed only once and then applied to, i.e., the annotation can be transferred to, all attributes
name of other sources to be integrated. Other semantic relationships are schema-derived relation-
ships, i.e., intra schema relationships derived, for example, from key/foreign keys constraints of
a relational source. Moreover, the integration designer can specify domain knowledge by adding
specific relationships.

The relationships of the Common Thesaurus are then used to cluster similar local attributes, thus
building a global attribute; for example, in Figure 11, the global attribute ContentRating (global at-
tributes are in the first column, with a blue background) is derived from four local attributes. In this
way, a global class is generated, with global attributes mapped with the local sources’ attributes.
For the MOVIE dataset we obtained the Mapping Table shown in Figure 11; the corresponding
clusters are shown in Table 2 of Appendix A. Each global attribute corresponds to a cluster (for

5In this task the tool uses user-defined or domain-specific Abbreviation Dictionaries, to disambiguate among different
interpretations, see, for example, https://www.acronymfinder.com/PG.html.
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example, the global attribute Director corresponds to cluster 5), and the non-aligned attributes
(i-e., global attributes with only a corresponding local attribute) are placed into a BLOB cluster. For
a more complete mapping see Table 2.

As a final comment, the construction of the gold standard with MOMIS was effective, as it re-
quired the manual annotation of few terms; furthermore, the use of the NORMS component al-
lowed the automatic alignment of various compound names. A similar process was performed to
obtain the Gold Standard for the BOOK dataset and for the Movies Big dataset.

5 CONCLUSION AND FUTURE WORK

In this article, we presented BLAST2, a novel technique to efficiently extract loose schema informa-
tion (i.e., statistics gathered directly from the data for approximately describing the data sources
schemas). We proposed a novel LSH-based preprocessing that improves the loose schema infor-
mation extraction over our previous work. Finally, we experimentally evaluated it on real-world
multi-source datasets. The experimental results showed that BLAST2 outperforms the existing
state-of-the-art meta-blocking approaches in terms of quality of the results and execution time.

As a future work, we will explore the proposed method also in the context of the Schema Match-
ing problem in a scenario with opaque column names (i.e., when the names of the attributes are
not meaningful/not given). The basic idea was proposed in Reference [3], where the authors have
formulated an algorithm composed essentially of two steps: In the first step, the duplicates be-
tween the datasets (with non-aligned schemes) are identified; in the second step, these duplicates
are used to match the schema with opaque column names. This method is limited to the compari-
son between two schemas, while our attribute clustering approach can be applied with more than
two datasets, i.e., applicable in a more general multi-source scenario.

Further, we plan to integrate other sources of “loose” schema information, for instance by ex-
tracting approximate functional dependencies among attributes of the datasets [4, 5] to better
identify clusters of related attributes.
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A APPENDIX
Table 2. Clusters of Attributes Generated with MOMIS
Gold Standard
D Attributes
1 IMDB2.duration, RogerErbert.duration, Rotten1.duration, IMDB3.duration, IMDB1.duration,
Rotten2.duration
2 Rottenl.year, Rotten2.year, IMDB2.year, IMDB3.year, RogerErbert.year, IMDB1.yearrange,
Amazon.year
3 Amazon.star, IMDB2.cast, Rottenl.actors, Rotten2.cast, IMDB3.actors, RogerErbert.actors,
Rottenl.cast, IMDB1.cast
4 IMDB1.name, Rottenl.name, RogerErbert.movie_name, Rotten2.title, Amazon.title,
IMDB?2.title, IMDB3.movie_name
5 RogerErbert.directors, IMDB1.director, Rotten2.director, IMDB2.director, Amazon.director,
Rottenl.director, IMDB3.directors
6 IMDB2.creators, Rottenl.creator, IMDB1.creator, Rotten2.creators
7 Rotten2.contentrating, IMDB2.contentrating, RogerErbert.pg_rating, IMDB1.contentrating
8 Rottenl.description, IMDB1.description
9 IMDB1.genre, Rotten2.genre, RogerErbert.genre, IMDB3.genre, Rotten1.genre, IMDB2.genre
10 IMDB1.releasedate, Rottenl.release date
11 Rottenl.ratingvalue, IMDB2.rating, IMDB3.movie_rating, IMDB1.ratingvalue, Rotten2.rating,
RogerErbert.critic_rating
12 Rotten2.summary, IMDB2.summary
BLOB | Rottenl.reviewcount, Rottenl.ratingcount, Rotten1.filming locations, Rottenl.language,
IMDB1.url, Amazon.cost, Amazon.time, Rottenl.country
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Table 3. Clusters of Attributes Generated with BLAST

BLAST
ID Attributes
0 IMDB2.duration, RogerErbert.duration, Rottenl.duration, IMDB3.duration
1 Rottenl.year, Rotten2.year, IMDB1.releasedate, IMDB2.year, IMDB3.year, RogerErbert.year,
IMDB1.yearrange, Amazon.year, Rottenl.release date
Amazon.star, IMDB2.cast, Rottenl.actors, Rotten2.cast, IMDB3.actors, RogerErbert.actors
IMDB1.name, Rottenl.name, RogerErbert.movie_name, Rotten2.title, Amazon.title, IMDB1.url,
IMDB?2.title
4 RogerErbert.directors, IMDB1.director, Rotten2.director, IMDB2.director, Amazon.director,
Rottenl.director, IMDB3.directors
IMDB2.creators, Rotten1.creator, IMDB1.creator, Rotten2.creators
Rottenl.cast, IMDB1.cast
Rottenl.ratingvalue, IMDB2.rating, IMDB3.movie_rating, IMDB1.ratingvalue, Rotten2.rating,
RogerErbert.critic_rating
8 IMDB1.duration, Rotten2.duration, Amazon.cost
9 Amazon.time, Rottenl.reviewcount, Rottenl.ratingcount
10 Rotten1.description, IMDB1.description, Rotten2.summary, IMDB3.movie_name,
IMDB2.summary
11 IMDB1.genre, Rotten2.genre
12 Rotten2.contentrating, IMDB2.contentrating, RogerErbert.pg_rating
13 RogerErbert.genre, IMDB3.genre, Rottenl.genre, IMDB2.genre
BLOB | Rottenl.filming locations, Rottenl.country, IMDB1.contentrating, Rottenl.language
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Table 4. Clusters of Attributes Generated with BLAST?2

BLAST2
1D Attributes
0 Amazon.time, IMDB2.duration, Rotten1.reviewcount, RogerErbert.duration, Rotten1.duration,

IMDB3.duration, Rotten1.ratingcount

1 Rotten2.year, IMDB2.year

2 Amazon.star, IMDB2.cast, Rottenl.actors, Rotten2.cast, IMDB3.actors, RogerErbert.actors,
Rotten1.cast, IMDBI1.cast

3 IMDB1.name, Rottenl.name, Rotten1.filming locations, RogerErbert.movie_name, Rotten2.title,
Amazon.title, IMDB1.url, IMDB3.movie_name, IMDB2.title

4 IMDB1.director, IMDB2.creators, RogerErbert.directors, Rotten2.director, IMDB2.director,
Rotten2.creators, Amazon.director, Rotten1.director, IMDB3.directors

5 Rottenl.year, IMDB1.releasedate, RogerErbert.year, IMDB3.year, IMDB1.yearrange,
Amazon.year, Rottenl.release date

6 Rottenl.ratingvalue, IMDB2.rating, IMDB3.movie_rating, IMDB1.ratingvalue, Rotten2.rating,
RogerErbert.critic_rating

7 IMDB1.duration, Rotten2.duration, Amazon.cost

8 IMDB1.genre, Rotten2.genre

9 Rotten2.contentrating, IMDB2.contentrating, RogerErbert.pg_rating

10 Rottenl.creator, IMDB1.creator

11 Rottenl.description, IMDB1.description, Rotten2.summary, IMDB2.summary

12 RogerErbert.genre, IMDB3.genre, Rottenl.genre, IMDB2.genre

BLOB | Rottenl.country, IMDB1.contentrating, Rottenl.language
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