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Abstract 

Many of the challenges that have to be faced in Industry 4.0 involve the management and analysis of huge amount of data (e.g. 
sensor data management and machine-fault prediction in industrial manufacturing, web-logs analysis in e-commerce). To handle 
the so-called Big Data management and analysis, a plethora of frameworks has been proposed in the last decade. Many of them 
are focusing on the parallel processing paradigm, such as MapReduce, Apache Hive, Apache Flink. However, in this jungle of 
frameworks, the performance evaluation of these technologies is not a trivial task, and strictly depends on the application 
requirements. The scope of this paper is to compare two of the most employed and promising frameworks to manage big data: 
Apache Flink and Apache Hive, which are general purpose distributed platforms under the umbrella of the Apache Software 
Foundation. To evaluate these two frameworks we use the benchmark BigBench, developed for Apache Hive. We re-
implemented the most significant queries of Apache Hive BigBench to make them work on Apache Flink, in order to be able to 
compare the results of the same queries executed on both frameworks. Our results show that Apache Flink, if it is configured 
well, is able to outperform Apache Hive. 
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1. Introduction 

In the last few years the volume of the data generated by the industries has grown really fast, and the trend is to 
grow more and more [21], this because Industry 4.0 uses different smart machines that produce a large amount of 
data. For example, a Consumer Packaged Goods company that produces a personal care product, generates 5,000 
data samples every 33 milliseconds, that result in 4 trillion samples per year [22]. Analysing in real time these large 
amount of data (Big Data) and extracting valuable information is strategic for the Industry. Referring to the previous 
example, the company needs to analyse its data to check if everything works fine very quickly. 

With the rising volume of the data, the projects related to the so-called Big Data have proliferated, both in the 
academy and in the industry [1, 13, 12, 14]. To manage and analyze this huge amount of data, distributed and 
parallel computing is the most promising approach. In particular, one of the newest technologies pioneers, Google, 
designed a new paradigm of parallel processing to manage its huge volume of data, Google File System and Map 
Reduce. This new paradigm simplifies the development of distributed applications on commodity hardware, and 
allows a high scalability of these applications. Indeed, after the publication of the Google File System [15], the Map 
Reduce paradigm is widespread. Existing frameworks inspired by this paradigm [16, 17, 18] have their own 
characteristics, for instance: API for programming languages, data mining and machine learning algorithms support. 
In this scenario, it is hard to evaluate which is suit for a specific application, business case or company. 

The goal of this work is to evaluate the performance of Apache Flink under different aspects of Big Data 
analytics. Flink is an open source framework for distributed Big Data analytics like Hadoop and Hive. However, the 
Flink core is a distributed streaming data-flow engine written in Java and Scala. The aims of Flink project is to 
bridge the gap between Map-Reduce-like systems and share-nothing parallel database management systems. The 
advantage of such system is to provide both batch and streaming processing in one single framework. This makes it 
the ideal choice to handle both the traditional need of batch processing for business intelligence (e.g. for 
datawarehouse), and the demand of real-time processing for the Industry 4.0 (e.g. for managing sensor data in real-
time). To evaluate Flink we choose to employ BigBench, a business-oriented benchmark, ideal for the assessing of 
big data framework in an industrial context. BigBench is an Open Source Big Data benchmark developed by Oracle, 
TeraData, Intel in collaboration with Middleware Systems Research Group, University of Toronto, Canada. Since 
BigBench is written for Apache Hive, we adapted the benchmark to work over the Flink engine, in order to compare 
the two platforms.  

The rest of the paper is structured as follows. In Section 2, an overview and related works about Flink and 
BigBench is presented. Section 3 is dedicated to our development of BigBench workload by using the Flink 
framework. The results of evaluation and comparison are presented in Section 4. Finally, we draw our conclusion 
about results in Section 5.  

 

2. Background and related work 

Apache Flink. Flink (formerly Stratosphere) is a distributed massively parallel system for data analytics. Its aim 
is to relief the programmers from the burden of explicitly programming software that has to run on distributed 
architectures. It achieves this by providing a high-level set of APIs to program user-defined functions (UDFs) that 
are automatically translated in a parallel distributed computation and executed on the Flink framework. Hence, we 
can see Flink as a general purpose distributed platform that aims to offer a complete and extensible solution for a 
data processing engine layer. 

Basically, Flink allows to process the user-defined functions (UDFs) code through the system stack illustrated in 
Figure 1a. The Flink core provides data distribution, communication and fault tolerance for distributed computations 
over data streams. On the top of it, there are several APIs used to create applications.   
The Flink has a master-slave architecture, composed of the Job Manager and one or more Task Manager, as 
illustrated by Figure 1b. The Job Manager is the master node, which coordinates all the computations in the Flink 
System, while the Task Managers are workers, that actually execute the distributed programs. This architecture is 
completely transparent to the programmers, which only have to know the exposed API to write programs. 
Defining its own serializers Flink is able to provide a cheap data representation and to perform, through low-level 
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optimized algorithms, transformations directly on raw data, without needing to deserialize objects from their binary 
representation. In terms of performance, that means that the ability to compute common operations (e.g., sorting and 
hashing) can be very efficient, even on complex datatypes, significantly reducing overheads. 

(a)     (b) 

Fig. 1. (a) Flink component stack; (b) Flink execution lifecycle. 

BigBench. The scope of this work is to evaluate Flink on as many as possible aspects of Big Data application, thus 
we chose the BigBench [19] as benchmark for this purpose. This benchmark has a data model that covers 3 
categories of data type, structured, semi-structured and unstructured data; in addition, its workload is designed to 
cover various business cases and technical aspects. 

Most of the fundamental aspects that characterize the BigBench data model, in particular as regards the 
structured relational tables, is adapted from the TCP-DS (TPC Benchmark DS: 'The' Benchmark Standard for 
decision support solutions including Big Data) [2]. In addition to structured relational data model from the TCP-DS, 
BigBench enriched the structured part with semi-structured and unstructured data. A simplified data model of 
BigBench is illustrated in Figure 2. The structured data depicts a product retailer; while semi-structured data are 
composed by clicks on retailer's web site; as well unstructured data are product reviews submitted by customers. 

 

 

Fig. 2. Simplified BigBench data model 

BigBench employs an extended version of Parallel Data Generation Framework (PDGF) [3] for the synthetic 
data generation. PDGF is a parallel data generator, which is able to generate a large volume of data for an arbitrary 
schema. While the standard PDGF can be employed to generate only structured data, BigBench developed an 
extended version of PDGF to generate semi-structured and unstructured data. BigBench can produce different 
volume of data by using scale factors. 

In order to better highlight data volume changes according to tested scale factors, through which 1, 50, 100, 150 
and 200 GB data have been respectively generated, in figure 4a shown size of table with scale factor 1 and the 
scaling method, and in the graphs of figure 4b report the size information about the main tables and their related data 
volume trends with different scale factors. 
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Fig. 3 BigBench queries 

Workload. The main part of the BigBench workload is a set of queries to be executed against the data generated by 
using itself. These queries are defined in terms of 30 business questions. In Figure 3 is shown a table with the 
characteristics of the 30 queries. Ten of these are derived from TPC-DS workload against structured data. The 
remains 20 were designed based on business use case identified by the McKinsey report on Big Data use cases and 
opportunities [7]. Seven of these 20 queries run against the semi-structured data and 5 run over the unstructured 
portion of the data model. 

From the queries implementation point of view: 
• 14 are pure HiveQL queries; 
• 4 are implemented by using Python; 
• 2 are Java-based MR jobs; 
• 5 exploit the OpenNLP libraries to implement sentiment analysis and named-entity recognition; 
• 5 employ Mahout to perform machine-learning algorithms. 

 
In the standard release of BigBench all queries use Hive. Our work consists of the development of queries with 

the Flink framework, and the comparison of the performance of two frameworks. 
 

 (a)     (b) 

Fig. 4. (a) BigBench tables scaling (b) BigBench volume with different scale factors. 

Related works. Evaluate Big Data frameworks is not an easy issue. There are emerging benchmarks to fullfill this 
goal. However, each benchmark has own characteristics and performs the evaluation on some specific aspects of Big 
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Data applications. An analysis on Big Data benchmarks is made by Geoffrey C. Fox et al [4], where a classification 
of Big Data benchmarks is presented. 

Another work about BigBench similar to ours, but by using the Spark engine, was done by Todor Ivanov et al [5], 
where the authors implemented BigBench queries by using Spark SQL and compare the performance of Hive over 
Hadoop engine with the performance of workload implemented with Spark SQL. In this case, Spark outperforms 
Hadoop in many cases, hence Spark uses main memory abstraction while Hadoop uses Map Reduce on disk. The 
few cases where Spark performs poorly are due to the join operation, and they are resolved in the new Spark release. 
On other hand, Juwei Shi et al [6] have established that, in some cases Hadoop performs better than Spark. These 
works demonstrate that there are no absolute winners in the Big Data frameworks. Every framework can take 
advantage in a specific aspect of Big Data analytics. With this point of view, we approach the performance 
evaluation of Flink. There are few works on Flink, hence it is still a new technology with respect to Spark. A 
comparison between Flink and Spark is analyzed by Ovidiu-Cristian Marcu et al [7], where two frameworks are 
compared by using various algorithms such as: word Count; grep; Tera Sort; K-Means; Page Rank; Connected 
Components. Our approach is to use a standard benchmark, and implement the workload by using Flink engine.  

3. Development 

We have taken 13 of the 30 BigBench queries, translated them through the Flink DataSet API and then executed 
on the Flink engine. In particular, referring to figure 3 we have translated the queries number 1, 5, 6, 8, 11, 13, 15, 
17, 20, 23, 24, 25, 29. We choose these queries because they cover a wide cross-functional spectrum: market basket 
analysis, machine learning algorithms and clustering processing. 

Most of the queries, implemented through a MapReduce approach on unstructured text proposed within the Big 
Bench workload, involve UDFs used to extract sentiment from the plan text. The import of these built-in functions 
would not involve any further engine-oriented implementations. We report two significant conversion examples. 

Note that, the complexity of our implementation of the BigBench queries remains the same of the original Hive 
implementations: the difference between the results depends on how the two frameworks manage the memory and 
the tasks. Hive is built on Hadoop that uses the classical MapReduce implementation [23], thus every transformation 
is performed in two phases: a map and a reduce. Between these two phases, the results are written to disk. Flink uses 
a different paradigm, that combines the map and reduce operations into a single job [17]. The intermediate results 
are kept in memory. As the memory access is much faster than the disk one, Flink’s implementation outperforms the 
Hive one. 

 
 
Query 11: Pearson product-moment correlation coefficient. BigBench documentation reports that this query "For 
a given product, measure the correlation of sentiments, including the number of reviews and average review ratings, 
on product monthly revenues within a given time frame". In particular, given a fixed period of time the query 
computes the total number of reviews and the average review ratings for each sold item. Then, using the correlation 
function included in the Hive Built-in Aggregate Functions (UDAF), for each item computes the Pearson correlation 
[8] between the number of total reviews and the average rate, in order to discover any relationship between these 
variables. The Flink Pearson correlation coefficient UDF has been developed referencing to the implementation 
proposed in [9], the correlation formula is shown in (1), where , , X is the number of reviews 
per item and Y is the average ratings per item. 

∑∑
∑

⋅

⋅
=

22 yx

yx
ρ  (1) 

The Flink implementation workflow is shown in Figure 5. One of the most challenging aspect of this 
implementation has been dealing with temporary aggregated values. Because Flink works use the MapReduce 
paradigm, so it is not possible to pass over data multiple times for further subsequent processing, since rows are 
continuously pushed to next operators, also on different machines, as soon as they have been processed. For this 
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reason, in order to perform a correct computation it has been necessary to join the rows with their respective mean 
vector and finally, after collecting the aggregated values required, extract the correlation coefficient through a 
FlatMap transformation on a temporary DataSet. 

 

Fig. 5 Query 11, Flink workflow 

Query 25: customers K-Means clustering. As reported in the BigBench documentation [19] this query performs a 
"Customer segmentation analysis: Customers are separated along the following key shopping dimensions: recency 
of last visit, frequency of visits and monetary amount. Use the store and online purchase data during a given year to 
compute. After model of separation is build, report for the analyzed customers to which "group" they were assigned. 

The query generates a dataset for K-Means from two views that respectively report the customers and the 
purchases information. The feature vector for each customer includes: 

• Customer ID; 
• Recency: a boolean value that indicates if the customer has made purchases in the last 60 days; 
• Frequency: total amount of purchases; 
• Total spend: total amount spent. 

To implement this query in Flink we used the Spark Machine Learning Library (Spark MLlib) [20], which 
provides a high-level access to a number of different machine learning algorithms, among which the K-Means. The 
main difference between Hive and Flink implementations is the source from which a given ML algorithm receives 
its input dataset. Hive indeed, saves the temporary result of the query execution directly in a resulting metastore on 
HDFS, instead Flink stores the temporary results in a CSV file. 

Figure 6 shows the workflow of the Flink execution: first it joins the customer data with the purchases data, after 
it groups the data for the customer ID, then for each customer it calculates the feature vector using an UDF reduce 
function; the partial results are saved in an CSV file, finally the feature vectors are elaborated using MLlib's K-
Means algorithm. 

 

 

Fig. 6 Query 25, Flink workflow 

The impact of the variation of the parameter k of the K-means algorithm is not a purpose of our work. Since our 
goals is to compare the performance of the two frameworks. We thus set the same parameter k value equal to 8 in 
both implementation.  

4. Results analysis  

This section aims to provide a running time analysis over the tested workload. The tests have been done on the 
IBM DIMA departmental cluster, in particular each machine of the cluster has 48 CPUs running at 3.7 GHz and 50 
GB of RAM. The applications used in the tests are: Apache Flink 0.10.0, Apache Hive 1.2.1, Apache Spark 1.6.0 
with spark-ml library, Apache Hadoop 2.4.1. 



701 Sonia Bergamaschi et al.  /  Procedia Manufacturing   11  ( 2017 )  695 – 702 

It is important to remark that the results reflect the proposed implementation shown in the previous chapter, also 
the running time may be subject to changes from the Flink engine settings, in particular with regards to memory 
management parameters specification. For the queries showed in details in the previous chapter it is possible to see 
the performance to the growth of the Scale Factor in Figure 7. 

More generally, Table 1 reports for each query that was implemented in Flink and the Scale Factor level, the time 
saved in percentage with respect to Hive. 

As it is shown, our Flink query implementations outperforms the Hive one in each test, allowing the user to save 
a lot of time. These results can be explained observing the structure of the two systems, Hive is built on Hadoop, so 
for each operation of MapReduce it writes the result on a disk, and this is a slow operation. Instead, Flink works 
mainly in memory, and this thus, moreover it has advanced strategies† to optimize the parallel JOIN operations, 
which are the most used operations in the query processing task. 

 

 
Fig. 7 Query 11 and 25 running time at the growt of the Scale FactorConclusion 

        Table 1. Time savings percentage Flink vs Hive. 
Query SF 1 SF 50 SF 100 SF 150 SF 200 

1 88.3% 90.0% 88.8% 88.7% 88.0% 

6 78.2% 91.1% 86.0% 85.2% 81.7% 

11 78.4% 76.5% 76.8% 65.8% 66.1% 

13 79.3% 86.9% 84.0% 78.4% 77.5% 

15 87.6% 84.2% 77.6% 68.5% 69.4% 

17 79.6% 90.9% 89.4% 90.1% 87.6% 

20 83.6% 82.0% 81.1% 80.4% 76.8% 

24 81.1% 80.2% 71.6% 73.2% 61.4% 

25 77.5% 77.8% 75.7% 69.8% 70.0% 

29 78.4% 89.8% 89.4% 87.3% 83.6% 

Total 80.8% 86.1% 83.7% 81.4% 78.3% 

5. Conclusions and Future works 

In this work we provided an overview of the Apache Flink platform, its structure and its characteristics as well as 
a description of the BigBench benchmark, a benchmark developed for Apache Hive. We used BigBench to evaluate 
the performance of Apache Flink and to compare it to Apache Hive.  In particular, we used the most relevant 13 of a 
total of 30 queries of the BigBench benchmark, able to cover a wide use cases spectrum. Finally, we have shown the 
performance of Apache Flink on the translated queries and how it outperforms Apache Hive as a significantly 
shorter execution time is used on these queries: Flink can achieve a time save in percentage around 80%. 

 

 
† https://flink.apache.org/news/2015/03/13/peeking-into-Apache-Flinks-Engine-Room.html 
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In future, we are planning to translate all the BigBench queries into Flink to complete this work, and extend it for 
different kinds of workload and application [10, 11], such as the predictive analysis of sensor data for Industry 4.0. 
Moreover, an interesting work that is possible to do is to try to translate the BigBench queries in Apache Spark using 
Spark SQL with the DataFrames, which provides a native support to query structured data. 
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